Automated theorem proving by resolution in non-classical logics



This paper is an overview of a variety of results, all centered around a common theme, namely embedding of non-classical logics into first order logic and resolution theorem proving. We present several classes of non-classical logics, many of which are of great practical relevance in knowledge representation, which can be translated into tractable and relatively simple fragments of classical logic. In this context, we show that refinements of resolution can often be used successfully for automated theorem proving, and in many interesting cases yield optimal decision procedures.


Non-classical logics Automated theorem proving Representation theorems 

Mathematics Subject Classifications (2000)

06D(05,25,30,35,50) 03G(10,20) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity, vol. 1. Princeton University Press, Princeton, NJ (1975)Google Scholar
  2. 2.
    Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of predicate logic. J. Philos. Logic 27, 217–274 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Aguzzoli, S., Ciabattoni, A.: Finiteness of infinite-valued Łukasiewicz logic. J. Logic, Lang. Inf. 9, 5–29 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Andréka, H., Németi, I., Sain, I.: Algebraic logic. In: Handbook of Philosophical Logic, 2nd edn., vol. 2. Kluwer, Dordrecht (2001)Google Scholar
  5. 5.
    Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Gottlob, G., Walsh, T. (eds) Proceedings of the 18th International Joint Conference on Artificial Intelligence, (IJCAR 2003), pp. 325–330. Morgan Kaufmann, San Mateo, CA (2003)Google Scholar
  6. 6.
    Baader, F.: The instance problem and the most specific concept in the description logic \({\mathcal E}{\mathcal L}\) w.r.t. terminological cycles with descriptive semantics. In: Günter, A., Kruse, R., Neumann, B. (eds) Proceedings of the 26th Annual German Conference on Artificial Intelligence, (KI 2003). LNAI, vol. 2821, pp. 64–78. Springer, Berlin Heidelberg New York (2003)Google Scholar
  7. 7.
    Baaz, M., Fermüller, C.G.: Resolution-based theorem proving for many-valued logics. J. Symb. Comput. 19, 353–391 (1995)MATHCrossRefGoogle Scholar
  8. 8.
    Baaz, M., Fermüller, C.G., Ciabattoni, A.: Herbrand’s theorem for prenex Gödel logic and its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov, A. (eds) Proceedings of LPAR’2001. Lecture Notes in Computer Science, vol. 2250, pp. 201–215. Springer, Berlin Heidelberg New York (2001)Google Scholar
  9. 9.
    Baaz, M., Fermüller, C.G., Salzer, G.: Automated deduction for many-valued logics. In: Robinson, A., Voronkov, A. (eds) Handbook of Automated Reasoning, vol. II, pp. 1355–1402. Elsevier, Amsterdam, The Netherlands (2001)Google Scholar
  10. 10.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Log. Comput. 4(3), 217–247 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. Journal of the ACM 45(6), 1007–1049 (1998)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Beckert, B., Hähnle, R., Manyà, F.: Transformations between signed and classical clause logic. In: Proceedings of the 29th International Symposium on Multiple-valued Logic (ISMVL’99), Freiburg, Germany, pp. 248–255. IEEE Press, Piscataway, NJ (1999)Google Scholar
  13. 13.
    Beckert, B., Hähnle, R., Manyà, F.: The 2-SAT problem of regular signed CNF formulas. In: Proceedings of the 30th International Symposium on Multiple-valued Logic (ISMVL’2000), Portland, USA, pp. 331–336. IEEE Press, Piscataway, NJ (2000)Google Scholar
  14. 14.
    Béjar, R., Hähnle, R., Manyà, F.: A modular reduction of regular logic to classical logic. In: Proceedings if the 31st International Symposium on Multiple-valued Logic (ISMVL’01), Warsaw, Poland, pp. 221–226. IEEE Press, Piscataway, NJ (2001)CrossRefGoogle Scholar
  15. 15.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge, UK (2001)MATHGoogle Scholar
  16. 16.
    Burris, S., Sankappanavar, H.P.: A course in universal algebra. In: Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York (1981)Google Scholar
  17. 17.
    Burris, S.: Polynomial time uniform word problems. Math. Log. Q. 41, 173–182 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Caferra, R., Zabel, N.: An application of many-valued logic to decide propositional S5 formulae: A strategy designed for a parametric tableaux-based theorem prover. In: Artificial Intelligence IV: Methodology, Systems, Applications, pp. 23–32. Elsevier, Amsterdam, The Netherlands (1990)Google Scholar
  19. 19.
    Dezani-Ciangaglini, M., Frisch, A., Giovannetti, E., Motohama, Y.: The relevance of semantic subtyping. Electronic Notes in Theoretical Computer Science 70(1) (2002)Google Scholar
  20. 20.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge, UK (1990)MATHGoogle Scholar
  21. 21.
    Dummet, M.: A propositional calculus with denumerable matrix. J. Symb. Log. 24(2), 97–106 (1959)CrossRefGoogle Scholar
  22. 22.
    Dunn, J.M.: Positive modal logic. Stud. Log. 55, 301–317 (1995)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision procedure for extensions of K4. In: Zakharyaschev, M., Segerberg, K., de Rijke, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 119. CSLI Lecture Notes, chapter 9, vol. 2, pp. 225–246. CSLI, Stanford, USA (2001)Google Scholar
  24. 24.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: Proceedings of the Fourteenth Annual IEEE Symposium on Logic in Computer Science (LICS’99), pp. 295–303. IEEE Computer Society Press, Los Alamitos, CA (1999)Google Scholar
  25. 25.
    Goldblatt, R.: Mathematics of modality, vol. 43 of Center for the Study of Language and Information. University of Chicago Press, Chicago, IL (1993)Google Scholar
  26. 26.
    Ganzinger, H., Sofronie-Stokkermans, V.: Chaining techniques for automated theorem proving in many-valued logics. In: Proceedings of the 30th International Symposium on Multiple-valued Logic (ISMVL’2000), Portland, USA, pp. 337–344. IEEE Press, Piscataway, NJ (2000)Google Scholar
  27. 27.
    Hähnle, R.: Automated Theorem Proving in Multiple-valued Logics. Oxford University Press, London, UK (1993)Google Scholar
  28. 28.
    Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif. Intell. 12(3,4), 231–264 (1994)MATHCrossRefGoogle Scholar
  29. 29.
    Hähnle, R.: Short conjunctive normal forms in finitely valued logics. J. Log. Comput. 4(6), 905–927 (1994)MATHCrossRefGoogle Scholar
  30. 30.
    Hähnle, R.: Exploiting data dependencies in many-valued logics. J. Appl. Non-Class. Log. 6(1), 49–69 (1996)MATHGoogle Scholar
  31. 31.
    Hähnle, R.: Proof theory of many-valued logic – linear optimization – logic design. Soft Computing – A Fusion of Foundations, Methodologies and Applications 1(3), 107–119 (1997)CrossRefGoogle Scholar
  32. 32.
    Hähnle, R.: Proof theory of many-valued logic – linear optimization – logic design: connections and interactions. Soft Computing – A Fusion of Foundations, Methodologies and Applications 1(3), 107–119 (1997)CrossRefGoogle Scholar
  33. 33.
    Hähnle, R.: Advanced many-valued logics. In: Handbook of Philosophical Logic, vol. 2, pp. 297–395. Kluwer, Dordrecht, 2nd edn. (2001)Google Scholar
  34. 34.
    Hähnle, R.: Complexity of many-valued logics. In: Fitting, M., Orłowska, E. (eds) Beyond Two: Theory and Applications of Multiple Valued Logic. Studies in Fuzziness and Soft Computing, vol. 114, chapter 3, pp. 211–233. Springer, Berlin (2003)Google Scholar
  35. 35.
    Hájek, P.: Metamathematics of fuzzy logic. In: Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)Google Scholar
  36. 36.
    Iturrioz, L., Orłowska, E.: A Kripke-style and relational semantics for logics based on Łukasiewicz algebras. Conference in honour of J. Łukasiewicz, Dublin (1996)Google Scholar
  37. 37.
    Ishtiaq, S.,O’Hearn, P.: BI as an assertion language for mutable data structures. In: Proceedings of 28th Symposium on Principles of Programming Languages (POPL’01), pp. 14–26. ACM, New York (2001)CrossRefGoogle Scholar
  38. 38.
    Iturrioz, L.: Symmetrical Heyting algebras with operators. Z. Math. Log. Grundl. Math. 29, 33–70 (1983)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Kifer, M., Lozinskii, M.: A logic for reasoning with inconsistency. J. Autom. Reason. 9, 179–215 (1992)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Kazakov, Y., de Nivelle, H.: Subsumption of concepts in \({\mathcal F}{\mathcal L}_0\) for (cyclic) terminologies with respect to descriptive semantics is PSPACE-complete. In: Calvanese, D., De Giacomo, G., Franconi, E. (eds) 2003 International Workshop on Description Logics (DL-03), vol. 81 of CEUR Workshop Proceedings, pp. 56–64, University of Rome “La Sapienza” and Free University of Bolzano/Bozen, CEUR, Rome, Italy (September 2003)Google Scholar
  41. 41.
    Lu, J., Murray, N.V., Rosenthal, E.: A framework for reasoning in multiple-valued logics. J. Autom. Reason. 21(1), 39–67 (1998)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Łukasiewicz, J.: Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes rendus de la Société des Sciences et Lettres de Varsovie, cl.iii 23, 51–77 (1930)Google Scholar
  43. 43.
    Manyà, F.: The 2-SAT problem in signed CNF formulas. Multiple-Valued Logic. An International Journal 5 (2000)Google Scholar
  44. 44.
    McAllester, D., Givan, R., Kozen, D., Witty, C.: Tarskian set constraints. Inf. Comput. 174, 105–131 (2002)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theor. Comp. Sci. 200, 335–366 (1998)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Mundici, D.: Satisfiability of many-valued sentential logics is NP-complete. Theor. Comp. Sci. 52, 145–153 (1987)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Ohlbach, H.J.: Translation methods for non-classical logics: An overview. Bulletin of the IGPL 1(1), 69–89 (1993)MATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Ono, H., Komori, Y.: Logics without the contraction rule. J. Symb. Log. 50, 169–201 (1985)MATHCrossRefMathSciNetGoogle Scholar
  49. 49.
    Ono, H.: Semantics for substructural logics. In: Schroeder-Heister, P., Došen, K. (eds) Substructural Logics, pp. 259–291. Oxford University Press, London, UK (1993)Google Scholar
  50. 50.
    Pym, D.J.: The semantics and proof theory of the logic of bunched implications. In: Applied Logics Series, vol. 26. Kluwer, Boston, MA (2002)Google Scholar
  51. 51.
    Rasiowa, H.: An algebraic approach to non-classical logics. In: Studies in Logic and the Foundations of Mathematics, vol. 78. North Holland, Amsterdam, The Netherlands (1974)Google Scholar
  52. 52.
    Schmidt, R.A.: Decidability by resolution for propositional modal logics. J. Autom. Reason. 22(4), 379–396 (1999)MATHCrossRefGoogle Scholar
  53. 53.
    Sofronie-Stokkermans, V.: Automated theorem proving by resolution for finitely-valued logics based on distributive lattices with operators. Multiple-valued Logic – An International Journal 6(3/4), 289–344 (2001)MATHMathSciNetGoogle Scholar
  54. 54.
    Sofronie-Stokkermans, V.: On uniform word problems involving bridging operators on distributive lattices. In: Egly, U., Fermüller, Ch. (eds) Proceedings of TABLEAUX 2002. LNAI, Copenhagen, Denmark, vol. 2381, pp. 235–250. Springer, Berlin Heidelberg New York (2002)Google Scholar
  55. 55.
    Sofronie-Stokkermans, V.: Resolution-based decision procedures for the universal theory of some classes of distributive lattices with operators. J. Symb. Comput. 36(6), 891–924 (2003)MATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    Urquhart, A.: Many-valued logic. In: Gabbay, D., Guenthner, F. (eds) Handbook of Philosophical Logic, vol. III, pp. 71–116. Reidel, Amsterdam, The Netherlands (1986)Google Scholar
  57. 57.
    Urquhart, A.: Duality for algebras of relevant logics. Stud. Log. 56(1,2), 263–276 (1996)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations