A split-combination approach to merging knowledge bases in possibilistic logic

  • Guilin Qi
  • Weiru Liu
  • David H. Glass
  • David A. Bell
Article

Abstract

We propose an adaptive approach to merging possibilistic knowledge bases that deploys multiple operators instead of a single operator in the merging process. The merging approach consists of two steps: the splitting step and the combination step. The splitting step splits each knowledge base into two subbases and then in the second step, different classes of subbases are combined using different operators. Our merging approach is applied to knowledge bases which are self-consistent and results in a knowledge base which is also consistent. Two operators are proposed based on two different splitting methods. Both operators result in a possibilistic knowledge base which contains more information than that obtained by the t-conorm (such as the maximum) based merging methods. In the flat case, one of the operators provides a good alternative to syntax-based merging operators in classical logic.

Keywords

knowledge representation merging of knowledge bases inconsistency handling possibilistic logic 

Mathematics Subject Classifications (2000)

68T30 68T37 03B53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud L., Kaci, S.: An argumentation framework for merging conflicting knowledge bases: the prioritized case. In: Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’05), pp. 527–538 (2005)Google Scholar
  2. 2.
    Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge bases consisting of first-order analysis. Comput. Intell. 8(1), 45–71 (1992)CrossRefGoogle Scholar
  3. 3.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI’93), pp. 640–645 (1993)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Prade, H.: From semantic to syntactic approaches to information combination in possibilistic logic. In: Aggregation and Fusion of Imperfect Information, pp. 141–151. Physica-Verlag, Heidelberg New York (1997)Google Scholar
  5. 5.
    Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study. Part 1: The flat case. Stud. Log. 58(1), 17–45 (1997)MATHMathSciNetGoogle Scholar
  6. 6.
    Benferhat, S., Dubois, D., Lang, J., Prade, H., Saffiotti, A., Smets, P.: A general approach for inconsistency handling and merging information in prioritized knowledge bases. In: Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pp. 466–477 (1998)Google Scholar
  7. 7.
    Benferhat, S., Dubois, D., Prade, H.: Some syntactic approaches to the handling of inconsistent knowledge bases: a comparative study Part 2: The prioritized case. In: Orlowska, E. (ed.) Logic at Work : Essays Dedicated to the Memory of Helena Rasiowa, pp. 473–511. Physica-Verlag, Heidelberg New York (1998)Google Scholar
  8. 8.
    Benferhat, S., Dubois, D., Prade, H., Williams, M.-A.: A practical approach to fusing prioritized knowledge bases. In: Proceeding of the 9th Portuguese Conference on Artificial Intelligence, pp. 223–236 (1999)Google Scholar
  9. 9.
    Benferhat, S., Dubois, D., Prade, H.: A computational model for belief change and fusing ordered belief bases. In: Williams, M.-A., Rott, H. (eds.) Frontiers of Belief Revision, pp. 109–134. Kluwer, Norwell, MA (2001)Google Scholar
  10. 10.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-based fusion of propositional information. Ann. Math. Artif. Intell. 34, 217–252 (2002)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Benferhat, S., Kaci, S.: Fusion of possibilistic knowledge bases from a postulate point of view. Int. J. Approx. Reason. 33(3), 255–285 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Benferhat, S., Sossai, C.: Reasoning with multiple-source information in a possibilistic logic framework. Inf. Fusion 7(1), 80–96 (2006)Google Scholar
  13. 13.
    Bessant, B., Grégoire, E., Marquis, P., Sais, L.: Iterated syntax-based revision in a nonmonotonic setting. In: Williams, M.A., Rott, H. (eds.) Frontier in Belief Revision, pp. 369–391. Kluwer, Dordrecht, The Netherlands (2001)Google Scholar
  14. 14.
    Cholvy, L.: A logical approach to multi-sources reasoning. In: Proceedings of International Conference on Knowledge Representation and Reasoning Under Uncertainty. Logic at Work, pp. 183–196. Springer, Berlin Heidelberg New York (1992)Google Scholar
  15. 15.
    Cholvy, L., Hunter, A.: Information fusion in logic: a brief overview. In: Proceedings of the 1th International Joint Conference on Qualitative and Quantitative Practical Reasoning, pp. 86–95 (1997)Google Scholar
  16. 16.
    Dubois, D., Prade, H.: Epistemic entrenchment and possibilistic logic. Artif. Intell. 50(2), 223–239 (1991)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 439–513. Oxford University Press, London, UK (1994)Google Scholar
  18. 18.
    Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. Assoc. Comput. Mach. 42, 3–42 (1995)MATHMathSciNetGoogle Scholar
  19. 19.
    Everaere, P., Konieczny, S., Marquis, P.: On merging strategy-proofness. In: Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR’04), pp. 357–368 (2004)Google Scholar
  20. 20.
    Everaere, P., Konieczny, S., Marquis, P.: Quota and Gmin merging operators. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05), pp. 424–429 (2005)Google Scholar
  21. 21.
    Grégoire, E., Konieczny, S.: Logic-based approaches to information fusion. Int. J. Inf. Fusion 7(1), 4–18 (2006)Google Scholar
  22. 22.
    Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 67–161 (1990)Google Scholar
  23. 23.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht, The Netherlands (2000)MATHGoogle Scholar
  24. 24.
    Konieczny, S., Pérez, R.P.: On the logic of merging. In: Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98), pp. 488–498. Morgan Kaufmann, San Mateo, CA (1998)Google Scholar
  25. 25.
    Konieczny, S.: On the difference between merging knowledge bases and combining them. In: Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning (KR’00), pp. 135–144. Morgan Kaufmann, San Mateo, CA (2000)Google Scholar
  26. 26.
    Konieczny, S., Pérez, R.P.: Merging information under constraints: a qualitative framework. J. Log. Comput. 12(5), 773–808 (2002)MATHCrossRefGoogle Scholar
  27. 27.
    Konieczny, S.: Propositional belief merging and belief negotiation model. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning, pp. 249–257 (2004)Google Scholar
  28. 28.
    Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artif. Intell. 157(1,2), 49–79 (2004)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Lang, J.: Possibilistic logic: complexity and algorithms. In: Gabbay, D., Smets, Ph. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 179–220. Kluwer, Norwell, MA (2000)Google Scholar
  30. 30.
    Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). IEEE Trans. Knowl. Data Eng. 10(1), 76–90 (1998)CrossRefGoogle Scholar
  31. 31.
    Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83, 363–378 (1996)CrossRefGoogle Scholar
  32. 32.
    Maynard-Zhang, P., Lehmann, D.: Representing and aggregating conflicting beliefs. J. Artif. Intell. Res. 19, 155–203 (2003)MATHMathSciNetGoogle Scholar
  33. 33.
    Meyer, T.: Merging epistemic states. In: PRICAI’2000: Topics in AI. LNAI 1886, pp. 286–296 (2000)Google Scholar
  34. 34.
    Meyer, T., Ghose, A., Chopra, S.: Social choice, merging and elections. In: Proceedings of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’2001), pp. 466–477 (2001)Google Scholar
  35. 35.
    Meyer, T., Ghose, A., Chopra, S.: Syntactic representations of semantic merging operations. In: Proceedings of the Seventh Pacific Rim International Conference on Artificial Intelligence (PRICAI’02), p. 620 (2002)Google Scholar
  36. 36.
    Qi, G., Liu, W., Glass, D.H.: A split-combination method for merging inconsistent possibilistic knowledge bases. In: Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning (KR’04), pp. 348–356 (2004)Google Scholar
  37. 37.
    Qi, G., Liu, W., Glass, D.H.: Combining individually inconsistent prioritized knowledge bases. In: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR’04), pp. 342–349 (2004)Google Scholar
  38. 38.
    Revesz, P.Z.: On the semantics of arbitration. Int. J. Algebra Comput. 7(2), 133–160 (1997)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Guilin Qi
    • 1
    • 2
  • Weiru Liu
    • 1
  • David H. Glass
    • 3
  • David A. Bell
    • 1
  1. 1.School of Electronics, Electrical Engineering and Computer ScienceQueen’s University BelfastBelfastUK
  2. 2.Institute AIFBUniversität KarlsruheKarlsruheGermany
  3. 3.School of Computing and MathematicsUniversity of UlsterCo.AntrimUK

Personalised recommendations