Conceptual logic programs

  • Stijn Heymans
  • Davy Van Nieuwenborgh
  • Dirk Vermeir
Article

Abstract

Open answer set programming (OASP) solves the lack of modularity in closed world answer set programming by allowing for the grounding of logic programs with an arbitrary non-empty countable superset of the program’s constants. However, OASP is, in general, undecidable: the undecidable domino problem can be reduced to it. In order to regain decidability, we restrict the shape of logic programs, yielding conceptual logic programs (CoLPs). CoLPs are logic programs with unary and binary predicates (possibly inverted) where rules have a tree shape. Decidability of satisfiability checking of predicates w.r.t. CoLPs is shown by a reduction to non-emptiness checking of two-way alternating tree automata. We illustrate the expressiveness of CoLPs by simulating the description logic \(\mathcal{SHIQ}\). CoLPs thus integrate, in one unifying framework, the best of both the logic programming paradigm (a flexible rule-based representation and nonmonotonicity by means of negation as failure) and the description logics paradigm (decidable open domain reasoning).

Keywords

answer set programming open domains description logics 

Mathematics Subject Classifications (2000)

68T27 68T30 68N17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic progamming. Technical Report, Arizona State University, Phoenix, Arizona (2002)Google Scholar
  2. 2.
    Andréka, H., Németi, I., Van Benthem, J.: Modal languages and bounded fragments of predicate logic. J. Philos. Logic 27(3), 217–274 (1998)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, UK (2003)MATHGoogle Scholar
  4. 4.
    Baader, F., Sattler, U.: Tableau algorithms for description logics. In: Proc of Tableaux 2000, vol. 1847 of LNAI, pp. 1–18. Springer, Berlin Heidelberg New York (2000)Google Scholar
  5. 5.
    Bechhofer, S., Goble, C., Horrocks, I.: DAML+OIL is not Enough. In: Proc of SWWS’01, pp. 151–159. CEUR, Stanford, California (2001)Google Scholar
  6. 6.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.:(OWL) Web Ontology Language Reference, Stanford University, California (2004)Google Scholar
  7. 7.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 34–43 (May 2001)Google Scholar
  8. 8.
    Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156, 75–111 (2004)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives of Mathematical Logic. Springer, Berlin Heidelberg New York (1997)Google Scholar
  10. 10.
    Bry, F., Schaffert, S.: An entailment relation for reasoning on the web. In: Proc of RuleML, LNCS, pp. 17–34. Springer, Berlin Heidelberg New York (2003)Google Scholar
  11. 11.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: 2ATAs make DLs easy. In: Proc of the 2002 Description Logic Workshops (DL’02). Toulouse, France (2002)Google Scholar
  12. 12.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)CrossRefGoogle Scholar
  13. 13.
    Donini, F., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog and description logics. J. Intell. Syst. 10, 227–252 (1998)CrossRefGoogle Scholar
  14. 14.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Nonmonotonic description logic programs: implemenation and experiments. In: Proc. of LPAR 2004, 3452 in LNAI, pp. 511–527. Springer, Berlin Heidelberg New York (2005)Google Scholar
  15. 15.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with DLs for the semantic web. In: Proc. of KR 2004, pp. 141–151. Morgan Kaufmann, San Mateo, California (2004)Google Scholar
  16. 16.
    Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., Klein, M.: OIL in a Nutshell. In: Proc. of EKAW 2000, LNAI. Springer, Berlin Heidelberg New York (2000)Google Scholar
  17. 17.
    Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.F.: OIL: An ontology infrastructure for the semantic web. IEEE Intell. Syst. 16(2), 38–45 (2001)CrossRefGoogle Scholar
  18. 18.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of ICLP 1988, pp. 1070–1080. MIT, Cambridge, Massachusetts (1988)Google Scholar
  19. 19.
    Gelfond, M., Przymusinska, H.: Reasoning in open domains. In: Logic Programming and Non-Monotonic Reasoning, pp. 397–413. MIT, Cambridge, Massachusetts (1993)Google Scholar
  20. 20.
    Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proc. of Twelfth International World Wide Web Conference (WWW 2003), pp. 48–57. ACM, Budapest, Hungary (2003)CrossRefGoogle Scholar
  21. 21.
    Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San Mateo, California (2001)Google Scholar
  22. 22.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. Proc. of WWW 2004. ACM, New York (2004)Google Scholar
  23. 23.
    Horrocks, I., Sattler, U.: A description logic with transitive and converse roles and role hierarchies. LTCS-Report 98–05 (1998)Google Scholar
  24. 24.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description logics. In: Proc. of LPAR’99, LNCS, pp. 161–180. Springer, Berlin Heidelberg New York (1999)Google Scholar
  25. 25.
    Horrocks, I., Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML, (May 2004)Google Scholar
  26. 26.
    Hustadt, U., Motik, B., Sattler, U.: Reducing \(\mathcal{SHIQ}^{-}\) description logic to disjunctive datalog programs. FZI-Report 1-8-11/03 (2003)Google Scholar
  27. 27.
    Jarrar, M., Meersman, R.: Formal ontology engineering in the DOGMA approach. Proc. of CoopIS/DOA/ODBASE, vol. 2519 of LNCS, pp. 1238–1254. Springer, Berlin Heidelberg New York (2002)Google Scholar
  28. 28.
    Levy, A.Y., Rousset, M.: CARIN: A representation language combining horn rules and description logics. In: Proc. of ECAI’96, pp. 323–327, Budapest, Hungary (1996)Google Scholar
  29. 29.
    Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Syst. 2(4), 526–541 (2001)MathSciNetGoogle Scholar
  30. 30.
    Lutz, C., Sattler, U.: Mary likes all cats. In: Baader, F., Sattler, U. (eds.) Proc of DL 2000, number 33 in CEUR-WS, pp. 213–226, Aachen, Germany (2000)Google Scholar
  31. 31.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: Proc of ISWC 2004, number 3298 in LNCS, pp. 549–563. Springer, Berlin Heidelberg New York (2004)Google Scholar
  32. 32.
    Motik, B., Volz, R., Maedche, A.: Optimizing query answering in description logics using disjunctive deductive databases. In: Proc. of KRDB’03, pp. 39–50, Humberg, Germany (2003)Google Scholar
  33. 33.
    Rector, A.L., Wroe, C., Rogers, J., Roberts, A.: Untangling taxonomies and relationships: personal and practical problems in loosely coupled development of large ontologies. In: Proc of K-CAP 2001, pp. 139–146. ACM, USA (2001)CrossRefGoogle Scholar
  34. 34.
    Rosati, R.: Towards expressive KR systems integrating datalog and description logics: preliminary report. In: Proc. of DL’99, pp. 160–164. Linkping, Sweden (1999)Google Scholar
  35. 35.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web. Sem. 3(1), pp. 41–60 (2005)Google Scholar
  36. 36.
    The Rule Markup Initiative. http://www.ruleml.org
  37. 37.
    Schlipf, J.: Some remarks on computability and open domain semantics. In Proc. of the Workshop on Structural Complexity and Recursion-Theoretic Methods in Logic Programming, Washington, District of Columbia (1993)Google Scholar
  38. 38.
    Swift, T.: Deduction in ontologies via answer set programming. In: Lifschitz, V., Niemelä, I. (eds.) Proc. of LPNMR 2004, vol. 2923 of LNCS, pp. 275–288. Springer, Berlin Heidelberg New York (2004)Google Scholar
  39. 39.
    Tobies S.: Complexity results and practical algorithms for logics in knowledge representation. PhD thesis, RWTH-Aachen, Germany (2001)Google Scholar
  40. 40.
    Uschold, M., Grüninger, M.: Ontologies: Principles, methods, and applications. Knowl. Eng. Rev. 11(2), 93–155 (1996)CrossRefGoogle Scholar
  41. 41.
    Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between DLs and open logic programming. In: Proc. of ICLP 1997, pp. 346–360. MIT, Cambridge, Massachusetts (1997)Google Scholar
  42. 42.
    van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)MATHCrossRefGoogle Scholar
  43. 43.
    Van Gelder, A., Schlipf, J.: Commonsense axiomatizations for logic programs. J. Log. Program. 17, 161–195 (1993)MATHCrossRefGoogle Scholar
  44. 44.
    Vardi, M.Y.: Why is modal logic so robustly decidable? Technical Report TR97-274, Rice University, Houston, Texas, April 12 (1997)Google Scholar
  45. 45.
    Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proc. of ICALP’98, pp. 628–641. Springer, Berlin Heidelberg New York (1998)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Stijn Heymans
    • 1
  • Davy Van Nieuwenborgh
    • 2
  • Dirk Vermeir
    • 2
  1. 1.Digital Enterprise Research Institute (DERI)University of InnsbruckInnsbruckAustria
  2. 2.Department of Computer ScienceVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations