Answer set based design of knowledge systems

  • Marcello BalducciniEmail author
  • Michael Gelfond
  • Monica Nogueira


The aim of this paper is to demonstrate that A-Prolog is a powerful language for the construction of reasoning systems. In fact, A-Prolog allows to specify the initial situation, the domain model, the control knowledge, and the reasoning modules. Moreover, it is efficient enough to be used for practical tasks and can be nicely integrated with programming languages such as Java. An extension of A-Prolog (CR-Prolog) allows to further improve the quality of reasoning by specifying requirements that the solutions should satisfy if at all possible. The features of A-Prolog and CR-Prolog are demonstrated by describing in detail the design of USA-Advisor, an A-Prolog based decision support system for the Space Shuttle flight controllers.


knowledge representation answer set programming reasoning planning diagnosis logic programming 


68T30 68T35 68T20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bacchus, F., Kabanza, F.: Using temporal logic to control search in a forward chaining Planner, pp. 141–153 (1996)Google Scholar
  2. 2.
    Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math. Artif. Intell. 22(1–2), 5–27 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for planning. Artif. Intell. 16, 123–191 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Balduccini, M.: USA-smart: improving the quality of plans in answer set planning. In: PADL’04, Lecture Notes in Artificial Intelligence (LNCS), Jun 2004Google Scholar
  5. 5.
    Balduccini, M.: Answer Set Based Design of Highly Autonomous, Rational Agents. PhD thesis, Texas Tech University, Dec 2005Google Scholar
  6. 6.
    Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Journal of Theory and Practice of Logic Programming (TPLP) 3(4–5), 425–461 (Jul 2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Doherty, P., McCarthy, J., Williams, M.-A. (eds) International Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium Series, pp. 9–18, Mar 2003Google Scholar
  8. 8.
    Balduccini, M., Gelfond, M., Nogueira, M.: A-Prolog as a tool for declarative programming. In: Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering (SEKE’2000), pp. 63–72, 2000Google Scholar
  9. 9.
    Balduccini, M., Mellarkod, V.S.: A-Prolog with CR-rules and ordered disjunction. In: ICISIP’04, pp. 1–6, Jan 2004Google Scholar
  10. 10.
    Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press (Jan 2003)Google Scholar
  11. 11.
    Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal of Logic 19(20), 73–148 (1994)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Baral, C., Gelfond, M.: Reasoning agents in dynamic domains. In: Workshop on Logic-Based Intelligence, pp. 257–279. Kluwer Academic Publishers (Jun 2000)Google Scholar
  13. 13.
    Baral, C., Tuan, L.C.: Effect of knowledge representation on model based planning: experiments using logic programming encodings. In: Proceedings of 2001 AAAI Spring Symposium on Answer Set Programming, pp. 110–115 (2001)Google Scholar
  14. 14.
    Barry, M., Watson, R.: Reasoning about actions for spacecraft redundancy management. In: Proceedings of the 1999 IEEE Aerospace Conference, vol. 5, pp. 101–112 (1999)Google Scholar
  15. 15.
    Brewka, G.: Logic programming with ordered disjunction. In: Proceedings of AAAI-02 (2002)Google Scholar
  16. 16.
    Brewka, G., Niemela, I., Syrjanen, T.: Implementing ordered disjunction using answer set solvers for normal programs. In: Flesca, S., Ianni, G. (eds) Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002) (Sep 2002)Google Scholar
  17. 17.
    Brewka, G., Niemela, I., Syrjanen, T.: Logic programs wirh ordered disjunction. Comput. Intell. 20(2), 335–357 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Buccafurri, F., Leone, N., Rullo, P.: Adding Weak Constraints to Disjunctive Datalog. In: Proceedings of the 1997 Joint Conference on Declarative Programming APPIA-GULP-PRODE’97 (1997)Google Scholar
  19. 19.
    Calimeri, F., Dell’Armi, T., Eiter, T., Faber, W., Gottlob, G., Ianni, G., Ielpa, G., Koch, C., Leone, N., Perri, S., Pfeifer, G., Polleres, A.: The DLV system. In: Flesca, S., Ianni, G. (eds) Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002) (Sep 2002)Google Scholar
  20. 20.
    Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in disjunctive logic programming: semantics, complexity, and implementation in DLV. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 03). Morgan Kaufmann, MSD (Aug 2003)Google Scholar
  21. 21.
    Dimopoulos, Y., Koehler, J., Nebel, B.: Encoding planning problems in nonmonotonic logic programs. In: Proceedings of the 4th European Conference on Planning, vol. 1348 of Lecture Notes in Artificial Intelligence (LNCS), pp. 169–181 (1997)Google Scholar
  22. 22.
    Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Answer set planning under action costs. J. Artif. Intell. Res. 9, 25–71 (2003)MathSciNetGoogle Scholar
  23. 23.
    Finger, J.J.: Exploiting Constraints in Design Synthesis. PhD thesis, Stanford University, 1987Google Scholar
  24. 24.
    Gabaldon, A., Gelfond, M.: From functional specifications to logic programs. In: Proceedings of the International Logic Programming Symposium (ILPS’97) (1997)Google Scholar
  25. 25.
    Gelfond, M.: Representing Knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond, Essays in Honour of Robert A Kowalski, Part II, vol. 2408, pp. 413–451. Springer Verlag, Berlin (2002)Google Scholar
  26. 26.
    Gelfond, M., Leone, N.: Knowledge representation and logic programming. Artif. Intell. 138(1–2) (2002)Google Scholar
  27. 27.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP-88, pp. 1070–1080 (1988)Google Scholar
  28. 28.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 365–385 (1991)Google Scholar
  29. 29.
    Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. on Artif. Intell. 3(16), (1998)Google Scholar
  30. 30.
    Gelfond, M., Watson, R.: On methodology for representing knowledge in dynamic domains. In: Proc of the 1998 ARO/ONR/NSF/DARPA Monterey Workshop on Engineering Automation for Computer Based Systems, pp. 57–66 (1999)Google Scholar
  31. 31.
    Hayes, P.J., McCarthy, J.: Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer, B., Michie, D. (eds) Machine Intelligence 4, pp. 463–502. Edinburgh University Press (1969)Google Scholar
  32. 32.
    Huang, Y., Kautz, H., Selman, B.: Control knowledge in planning: benefits and tradeoffs. In: Proceedings of the 16th National Conference of Artificial Intelligence (AAAI’99), pp. 511–517 (1999)Google Scholar
  33. 33.
    Kaminski, M.: A note on the stable model semantics of logic programs. Artif. Intell. 96(2), 467–479 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kautz, H., Selman, B.: The role of domain-specific knowledge in the planning as satisfiability framework. In: Proceedings of AIPS’98 (1998)Google Scholar
  35. 35.
    Kolvekal, L.: Developing an Inference Engine for CR-Prolog with Preferences. Master’s thesis, Texas Tech University, (Dec 2004)Google Scholar
  36. 36.
    Lifschitz, V.: Action Languages, Answer Sets, and Planning. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 357–373. Springer, Berlin Heidelberg New York (1999)Google Scholar
  37. 37.
    McCarthy, J.: Epistemological problems of artificial intelligence. In: Proceedings of IJCAI-77, pp. 1038–1044, (1977)Google Scholar
  38. 38.
    Mellarkod, V.S.: Optimizing the computation of stable models using merged rules. Master’s thesis, Texas Tech University (May 2002)Google Scholar
  39. 39.
    Niemela, I., Simons, P.: Extending the Smodels System with Cardinality and Weight Constraints, pp. 491–521. Logic-Based Artificial Intelligence. Kluwer Academic Publishers, Norwell, Massachusetts (2000)Google Scholar
  40. 40.
    Niemela, I., Simons, P., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (Jun 2002)MathSciNetGoogle Scholar
  41. 41.
    Nogueira, M.: Building Knowledge Systems in A-Prolog. PhD thesis, University of Texas at El Paso (May 2003)Google Scholar
  42. 42.
    Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog decision support system for the Space Shuttle. In: PADL 2001, pp. 169–183 (2001)Google Scholar
  43. 43.
    Pednault, E.: ADL: exploring the middle ground between STRIPS and the situation calculus. In: Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning (KR-89), pp. 324–332 (1989)Google Scholar
  44. 44.
    Reiter, R.: On Closed World Data Bases, pp. 119–140. Logic and Data Bases. Plenum Press, New York, New York (1978)Google Scholar
  45. 45.
    Simons, P.: Extending the stable model semantics with more expressive rules. In: Proceedings of the 5th International Conference on Logic Programming and Non-monotonic Reasoning (LPNMR-99), number 1730 in Lecture Notes in Artificial Intelligence (LNCS). Springer, Berlin Heidelberg New York (1999)Google Scholar
  46. 46.
    Watson, R.: An application of action theory to the Space Shuttle. In: PADL-99, vol. 1551 of Lecture Notes in Artificial Intelligence (LNCS), pp. 290–304, (1999)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Marcello Balduccini
    • 1
    Email author
  • Michael Gelfond
    • 1
  • Monica Nogueira
    • 2
  1. 1.Computer Science DepartmentTexas Tech UniversityLubbockUSA
  2. 2.Center for Logistics and Digital Strategy, Kenan Institute of Private Enterprise, Kenan-Flagler Business SchoolThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations