Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 669–680 | Cite as

A 10 Gb/s noise-canceled transimpedance amplifier for optical communication receivers

  • Seyed Ruhallah Qasemi
  • Maryam Rafati
  • Parviz AmiriEmail author
Article
  • 57 Downloads

Abstract

This study presents a noise-canceled transimpedance amplifier (TIA) for optical receivers. The proposed structure consists of a shunt feedback common source amplifier as an input stage followed by two regulated cascodes (RGC) and finally a differential to the single-ended amplifier at the output stage. By exploiting the noise-canceling technique at the input stage, 31.8% of the total output noise is canceled. In addition, the auxiliary path’s RGC circuit, as it has a low input impedance, is utilized to cancel out the photodiode (PD) large parasitic capacitance at the input stage. The proposed TIA along with post amplifiers, including packaging components, are simulated in TSMC 90 nm RF CMOS technology at the post-layout level. The TIA average input-referred current noise is equal to \(9.5\;{\text{pA}}/\sqrt {\text{Hz}}\). The PD capacitance is considered as 325 fF for all simulations. The transimpedance gain is equal to 60 dBΩ and the 3-dB bandwidth is equal to 7 GHz. The power consumption of the proposed TIA is 3.6 mW from a 1.2 V supply voltage. The TIA occupies a chip area of 0.036 mm2.

Keywords

Transimpedance amplifier Shunt feedback Regulated cascode Noise-canceling 

Notes

References

  1. 1.
    Razavi, B. (2012). Design of integrated circuits for optical communications (2nd ed.). Hoboken: Wiley.Google Scholar
  2. 2.
    Säckinger, E. (2017). Analysis and design of transimpedance amplifiers for optical receivers. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  3. 3.
    Hasan, S. M. R. (2005). Design of a low-power 3.5-GHz broad-band CMOS transimpedance amplifier for optical transceivers. IEEE Transactions on Circuits and Systems I: Regular Papers,52, 1061–1072.  https://doi.org/10.1109/tcsi.2005.849101.CrossRefGoogle Scholar
  4. 4.
    Rakide, M., Seifouri, M., & Amiri, P. (2016). A folded cascade-based broadband transimpedance amplifier for optical communication systems. Microelectronics Journal,54, 1–8.  https://doi.org/10.1016/j.mejo.2016.05.003.CrossRefGoogle Scholar
  5. 5.
    Seifouri, M., Amiri, P., & Rakide, M. (2015). Design of broadband transimpedance amplifier for optical communication systems. Microelectronics Journal,46, 679–684.  https://doi.org/10.1016/j.mejo.2015.05.007.CrossRefGoogle Scholar
  6. 6.
    Ding, R., Xuan, Z., Baehr-Jones, T., & Hochberg, M. (2014). A 40-GHz bandwidth transimpedance amplifier with adjustable gain-peaking in 65-nm CMOS. In: 2014 IEEE 57th international midwest symposium on circuits and systems (pp. 965–968). IEEE.  https://doi.org/10.1109/mwscas.2014.6908577.
  7. 7.
    Seifouri, M., Amiri, P., & Dadras, I. (2017). A transimpedance amplifier for optical communication network based on active voltage-current feedback. Microelectronics Journal,67, 25–31.  https://doi.org/10.1016/j.mejo.2017.07.003.CrossRefGoogle Scholar
  8. 8.
    Greaves, S. D., & Unwin, R. T. (1996). The design of tuned front-end GaAs MMIC optical receivers. IEEE Transactions on Microwave Theory and Techniques,44, 591–597.  https://doi.org/10.1109/22.491026.CrossRefGoogle Scholar
  9. 9.
    Dadras, I., Qasemi, S. R., & Amiri, P. (2018). 10 Gb/s inductorless single-stage high-gain transimpedance amplifier for optical communication receiver. Analog Integrated Circuits and Signal Processing.  https://doi.org/10.1007/s10470-018-1321-3.CrossRefGoogle Scholar
  10. 10.
    Atef, M., & Zimmermann, H. (2012). 2.5 Gbit/s transimpedance amplifier using noise cancelling for optical receivers. In 2012 IEEE international symposium on circuits and systems (pp. 1740–1743). IEEE.  https://doi.org/10.1109/iscas.2012.6271599.
  11. 11.
    Bruccoleri, F., Klumperink, E. A. M., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits,39, 275–282.  https://doi.org/10.1109/JSSC.2003.821786.CrossRefGoogle Scholar
  12. 12.
    Rafati, M., Qasemi, S. R., Nejati, A., & Amiri, P. (2019). A g m-boosting 3–5 GHz noise-cancelling LNA. In 2019 27th Iranian conference on electrical engineering (pp. 376–379). IEEE.  https://doi.org/10.1109/iraniancee.2019.8786680.
  13. 13.
    Ebrahimi, A., Bastan, Y., Ebrahimi, E., & Shamsi, H. (2015). Exploiting cross-coupled and body-driven techniques for noise cancellation of an inductor-less wideband LNA. AEÜ: International Journal of Electronics and Communications,69, 708–714.  https://doi.org/10.1016/j.aeue.2014.12.014.CrossRefGoogle Scholar
  14. 14.
    Rafati, M., Qasemi, S. R., & Amiri, P. (2019). A g m-boosted highly linear fully differential 3–5 GHz UWB LNA employing noise and distortion canceling technique. Analog Circuits and Signal Processing.  https://doi.org/10.1007/s10470-019-01524-9.CrossRefGoogle Scholar
  15. 15.
    Bahadorani, N., Dolatshahi, M., & Pouya, B. (2018). A new 10 Gb/s optical receiver using active inductor in 90 nm CMOS technology. In Iranian conference on electrical engineering (ICEE) (pp. 70–75). IEEE.  https://doi.org/10.1109/icee.2018.8472504.
  16. 16.
    Zohoori, S., & Dolatsahi, M. (2017). An inductor-less, 10 Gbps trans-impedance amplifier operating at low supply-voltage. In 2017 Iranian conference on electrical engineering (pp. 145–148). IEEE.  https://doi.org/10.1109/iraniancee.2017.7985308.
  17. 17.
    Anusha, U., Raghu, S., & Duraiswamy, P. (2018). 30-Gb/s low power inductor less CMOS transimpedance amplifier for optical receivers. In: 2018 3rd international conference on microwave and photonics (pp. 1–2). IEEE.  https://doi.org/10.1109/icmap.2018.8354482.
  18. 18.
    Zohoori, S., & Dolatshahi, M. (2018). A low-power CMOS transimpedance amplifier in 90-nm technology for 5-Gbps optical communication applications. International Journal of Circuit Theory and Applications,46, 2217–2230.  https://doi.org/10.1002/cta.2565.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringShahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations