Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 2, pp 229–235 | Cite as

A 2.5-Gb/s CMOS optical receiver with wide dynamic range using dual AGCs

  • Ya Fang
  • Jin HeEmail author
  • Deshui Yu
  • Hao Wang
  • Sheng Chang
  • Qijun Huang
  • Zhiqiang Tong


A 2.5-Gb/s optical receiver with wide dynamic range has been developed in a 55-nm standard CMOS technology. As the input stage of the proposed optical receiver, a transimpedance amplifier of a three-cascaded inverting topology with a feedback resistor incorporates dual automatic gain controls to broaden the input dynamic range. Followed by a post amplifier and a 50-Ω output buffer, the measured input sensitivity, overload, and dynamic range of the optical receiver are respectively − 26 dBm, 3 dBm, and 29 dB for a bit-error rate of 10−12 at 2.5 Gb/s. The whole receiver draws a total current of 36 mA from a 3.3 V supply and the chip has an area of 1176 μm × 985 μm.


Optical receiver Transimpedance amplifier (TIA) Dual AGCs Dynamic range Active inductor CMOS 



This work was supported by the Fundamental Research. Funds for the Central Universities, Wuhan University (2042015kf0174 and 2042014kf0238), the National Natural Science Fundamental of China (61774113, 61204096 and 61404094), and the China Postdoctoral Science Foundation (2012T50688).


  1. 1.
    Lunardi, L., Chandrasekhar, S., Swartz, R. G., Hamm, R. A., & Qua, G. J. (1994). A high speed burst mode optoelectronic integrated circuit photoreceiver using InP/InGaAs HBT’s. IEEE Photonics Technology Letters, 6(7), 817–818.CrossRefGoogle Scholar
  2. 2.
    Broeke, L. A. D., & Nieuwkerk, A. J. (1993). Wide-band integrated optical receiver with improved dynamic range using a current switch at the input. IEEE Journal of Solid-State Circuits, 28(7), 862–864.CrossRefGoogle Scholar
  3. 3.
    Nakagawa, J., Nogami, M., Suzuki, N., Noda, M., Yoshima, S., & Tagami, H. (2010). 10.3-Gb/s burst-mode 3R receiver incorporating full AGC optical receiver and 82.5-GS/s over-sampling CDR for 10G-EPON systems. IEEE Photonics Technology Letters, 22(7), 471–473.CrossRefGoogle Scholar
  4. 4.
    Huang, S. H., & Chen, W. Z. (2017). A 25 Gb/s 1.13 pJ/b–10.8 dBm input sensitivity optical receiver in 40 nm CMOS. IEEE Journal of Solid-State Circuits, 52(3), 747–756.CrossRefGoogle Scholar
  5. 5.
    Aoki, T., et al. (2018). Low-crosstalk simultaneous 16-channel × 25 Gb/s operation of high-density silicon photonics optical transceiver. IEEE Journal of Lightwave Technology, 36(5), 1262–1267.CrossRefGoogle Scholar
  6. 6.
    Szilagyi, L., Khafaji, M., Pliva, J., Henker, R., & Ellinger, F. (2018). 40-Gbit/s 850-nm VCSEL-based full-CMOS optical link with power-data rate adaptivity. IEEE Photonics Technology Letters, 30(7), 611–613.CrossRefGoogle Scholar
  7. 7.
    Chen, W. Z., & Lu, C. H. (2006). Design and analysis of a 2.5-Gbps optical receiver analog front-end in a 0.35-µm digital CMOS technology. IEEE Transactions on Circuits and Systems I, 53(4), 977–983.CrossRefGoogle Scholar
  8. 8.
    Tang, W., & Plant, D. V. (2006). A 3.125-Gbit/s parallel optical receiver in 0.13-µm CMOS with direct crosstalk power penalty measurement capability. IEEE Transactions on Circuits and Systems II, 53(12), 1426–1430.CrossRefGoogle Scholar
  9. 9.
    Chen, W. Z., Gan, R. M., & Huang, S. H. (2009). A single-chip 2.5-Gb/s CMOS burst-mode optical receiver. IEEE Transactions on Circuits and Systems I, 56(10), 2325–2331.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Säckinger, E. (2005). Broadband circuits for optical fiber communication (p. 116). New York: Wiley.CrossRefGoogle Scholar
  11. 11.
    Lee, S., Kim, J., Le, Q., Lee, M., Kim, H., & Park, C. S. (2011). A single-chip 2.5-Gb/s burst-mode optical receiver with wide dynamic range. IEEE Photonics Technology Letters, 23(2), 85–87.CrossRefGoogle Scholar
  12. 12.
    Atef, M., & Abd-elrahman, D. (2014). 2.5 Gbit/s compact transimpedance amplifier using active inductor in 130 nm CMOS technology. In IEEE 21st international conference mixed design of integrated circuits & systems (MIXDES) (pp. 103–107).Google Scholar
  13. 13.
    Cecilia, G., Carlos, S. A., Erick, G., Javier, A., Concepción, A., & Santiago, C. (2015). Single-chip receiver for 1.25 Gb/s over 50-m SI-POF. IEEE Photonics Technology Letters, 27(11), 1220–1223.CrossRefGoogle Scholar
  14. 14.
    Bassem, F., Asif, J. C., & Mona, M. H. (2016). A 12-m 2.5-Gb/s lighting compatible integrated receiver for OOK visible light communication links. IEEE Journal of Lightwave Technology, 34(16), 3768–3775.Google Scholar
  15. 15.
    Jose, A. A., David, I., Jose, A. L., & Ignacio, G. (2017). 1.25–2.5 Gbps cost-effective transceiver based on directly phase modulated VCSEL for flexible access networks. In IEEE 2017 optical fiber communications conference and exhibition (OFC) (pp. 1–3).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and TechnologyWuhan UniversityWuhanChina
  2. 2.Analog Department of Fesilink Microelectronic Technology Co.WuhanChina

Personalised recommendations