Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 449–461 | Cite as

Low-light-level CMOS imaging sensor with CTIA and digital correlated double sampling

  • Mei ZouEmail author
  • Ji-qing Zhang
  • Sheng-you Zhong
  • Zheng-fen Li
  • Li-bin Yao


This paper presents two low-light-level CMOS image sensors with capacitive transimpedance amplifier (CTIA) and digital correlated double sampling (CDS). In order to achieve high sensitivity for low-light-level CMOS image sensor, the CTIA pixel circuit with a small integration capacitor is used. In order to remove the noise of the low-light-level CMOS image sensor, a digital CDS is designed, which realizes the subtraction algorithm between the reset signal and pixel signal off-chip. The pixel reset noise, pixel fixed-pattern noise (FPN) and the column FPN can be greatly reduced by this digital CDS. Two test chips based on this method with 256 × 256 pixel array are fabricated in a 0.35 μm CMOS technology, one is based on DC-coupled CTIA pixel circuit, and the other one is based on AC-coupled CTIA pixel circuit. These two chips are designed with the same column sigma-delta analog-to-digital (∑∆ ADC), whose resolution is 15-bit. At a frame rate of 7 fps, the low-light-level CMOS image sensor with DC-coupled CTIA pixel circuit and digital CDS can capture recognizable images with the illumination down to 0.05 lux. The low-light-level CMOS image sensor with AC-coupled CTIA pixel circuit can reduce the dark current by reducing the reverse bias voltage of the photodiode.


CMOS image sensor Digital correlated double sampling (digital CDS) Low-light-level Capacitive transimpedance amplifier (CTIA) 



The authors wish to thank Jizhongshun, Chenshaolin for FPGA test code implementation.


  1. 1.
    Gamal, A., & Eltoukhy, H. (2005). CMOS image sensors. IEEE Circuits and Devices Magazine,21, 6–20.CrossRefGoogle Scholar
  2. 2.
    Ji, H., & Abshire, P. A. (2006). A CMOS image sensor for low light applications. ISCAS,2006, 1651–1654.Google Scholar
  3. 3.
    Xu, R., Liu, B., & Yuan, J. (2012). A 1500 fps highly sensitive 256 × 256 CMOS imaging sensor with in-pixel calibration. IEEE Journal of Solid-State Circuits,47(6), 1408–1418.CrossRefGoogle Scholar
  4. 4.
    Murari, K., Etienne-Cummings, R., Thakor, N. V., & Cauwenberghs, G. (2011). A CMOS in-pixel CTIA high-sensitivity fluorescence imager. IEEE Transactions on Biomedical Circuits and Systems,5(5), 449–458.CrossRefGoogle Scholar
  5. 5.
    Furuta, M., Nishikawa, Y., Inoue, T., & Kawahito, S. (2007). A high-speed, high-sensitivity digital CMOS image sensor with a global shutter and 12-bit column-parallel cyclic A/D converters. IEEE Journal of Solid-State Circuits,42(4), 766–774.CrossRefGoogle Scholar
  6. 6.
    Chen, Y., & Kleinfelder, S. (2004). CMOS active pixel sensor achieving 90 dB dynamic range with column-level active reset. Proceedings of SPIE,5301, 438–449.CrossRefGoogle Scholar
  7. 7.
    Pain, B., Cunningham, T. J., Hancock, B., Yang, G., Seshadri, S., & Ortiz, M. (2002). Reset noise suppression in two-dimension CMOS photodiode pixels through column-based feedback-reset. In Digest. International electron devices meeting (pp. 809–812).Google Scholar
  8. 8.
    Wu, C.-Y., Shih, Y.-C., Lan, J.-F., Hsieh, C.-C., Huang, C.-C., & Lu, J.-H. (2004). Design, optimization, and performance analysis of new photodiode structures for CMOS active-pixel-sensor (APS) imager applications. IEEE Sensors Journal,4(1), 135–144.CrossRefGoogle Scholar
  9. 9.
    Loukianova, N. V., Folkerts, H. O., Maas, J. P. V., Verbugt, D. W. E., Mierop, A. J., Hoekstra, W., et al. (2003). Leakage current modeling of test structures for characterization of dark current in CMOS image sensors. IEEE Transactions on Electron Devices,50(1), 77–83.CrossRefGoogle Scholar
  10. 10.
    Weckler, G. P. (1967). Operation of p–n photodetectors in a photon flux integrating mode. IEEE Journal of Solid-State Circuits,2(3), 65–73.CrossRefGoogle Scholar
  11. 11.
    Bourree, L. E. (2014). Performance of PHOTONIS’ low light level COMS imaging sensor for long range observation. Proceedings of SPIE,9100, 910004.CrossRefGoogle Scholar
  12. 12.
    Lim, S., Cheon, J., Chae, Y., Jung, W., Lee, D. H., Kwon, M., et al. (2011). A 240-frames/s 2.1-Mpixel CMOS image sensor with column-shared cyclic ADCs. IEEE Journal of Solid-State Circuits,46(9), 2073–2083.CrossRefGoogle Scholar
  13. 13.
    Chae, Y., Cheon, J., Lim, S., Kwon, M., Yoo, K., Jung, W., et al. (2011). A 2.1 Mpixels, 120 frame/s CMOS image sensor with column-parallel ∆Σ ADC architecture. IEEE Journal of Solid-State Circuits,46(1), 236–247.CrossRefGoogle Scholar
  14. 14.
    Zhou, Y. F., Cao, Z. X., Wu, N. J., et al. (2015). A low power global shutter pixel with extended FD voltage swing range for large format high speed CMOS image sensor. Science China,58(4), 1–10.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kunming Institute of PhysicsKunmingChina

Personalised recommendations