Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 2, pp 351–361 | Cite as

Design of A 1-V 3rd-order 1-bit Σ-Δ modulator with inverter-based static–dynamic hybrid structure amplifiers

  • Xiao ChenEmail author
  • Zhi-gong WangEmail author
  • Fei LiEmail author
Mixed Signal Letter


A 1-V 3rd-order 1-bit discrete time (DT) Σ-Δ modulator is designed and implemented in a 40-nm CMOS technology. With the input feed forward coefficient optimized, the output swings of the integrators are minimized. The bootstrapped switches are utilized at the input of the modulator to improve the linearity of the sampled signal. In order to reduce the power consumption in low voltage environment, the inverter-based static–dynamic hybrid structure amplifier is proposed and a dynamic comparator is employed. The designed modulator achieves 89.8 dB maximum SNR and 84.1 dB maximum SNDR over a 100 kHz signal bandwidth with a sampling frequency of 25.6 MHz, and the dynamic range (DR) is 86.7 dB. The proposed modulator shows competitive figure of merits (FOMs) compared with other near-1V-supply hundred-kHz-BW modulators.


Σ-Δ modulator Bootstrapped switches Inverter-based static–dynamic hybrid structure amplifier Dynamic comparator 



  1. 1.
    Tao, L., & Yao, L. (2008). A 1-V, 81-dB, 780-KS/s, sigma-delta modulator in 0.13-µm digital CMOS technology. In IEEE international conference on electron devices and solid-state circuits (pp. 1–3).Google Scholar
  2. 2.
    Qiao, Z., Zhou, X., & Li, Q. (2013). A 0.25V 97.8fJ/c.-s. 86.5dB SNDR SC ΔΣ modulator in 0.13 µm CMOS. In IEEE 56th international midwest symposium on circuits and systems (pp. 261–264).Google Scholar
  3. 3.
    Dessouky, M., & Kaiser, A. (2001). Very low-voltage digital-audio ΔΣ modulator with 88-dB dynamic range using local switch bootstrapping. IEEE Journal of Solid-State Circuits, 36(3), 349–355.CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Xiao, Y., & Fu, Q. (2018). A low power consumption inverter-based sigma delta interface for capacitive accelerometer. IEICE Electronics Express, 15(1), 1–6.Google Scholar
  5. 5.
    Zhang, J., Lian, Y., Yao, L., & Shi, B. (2011). A 0.6-V 82-dB 28.6-µW continuous-time audio delta-sigma modulator. IEEE Journal of Solid-State Circuits, 46(10), 2326–2335.CrossRefGoogle Scholar
  6. 6.
    Chae, Y., & Han, G. (2009). Low voltage low power inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of Solid-State Circuits, 44(2), 458–472.CrossRefGoogle Scholar
  7. 7.
    Roh, J., Byun, S., Choi, Y., Roh, H., Kim, Y., & Kwon, J. (2008). A 0.9-V 60-µW 1-bit fourth-order delta-sigma modulator with 83-dB dynamic range. IEEE Journal of Solid-State Circuits, 43(2), 361–370.CrossRefGoogle Scholar
  8. 8.
    Schreier, R., & Temes, G. C. (2005). Understanding delta–sigma data converters. New York: Wiley Press.Google Scholar
  9. 9.
    Malcovati, P., Brigati, S., Francesconi, F., Maloberti, F., Cusinato, P., & Baschirotto, A. (2003). Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Transactions on Circuits and System-I: Fundamental Theory and Applications, 50(3), 352–364.CrossRefGoogle Scholar
  10. 10.
    Cao, Y., Zhang, T., Chen, Y., Ye, F., Ren, J. (2018). An operational amplifier assisted input buffer and an improved bootstrapped switch for high-speed and high-resolution ADCs. In IEEE international symposium on circuits and systems (pp. 1–5).Google Scholar
  11. 11.
    Honarparvar, M., Safi-Harb, M., Sawan, M. (2016). An amplifier-shared inverter-based MASH structure ΔΣ modulator for smart sensor interfaces. In IEEE international symposium on circuits and systems (pp. 2250–2253).Google Scholar
  12. 12.
    Masaya, M., Yusuke, A., Daehwa, P., & Akira, M. (2008). A low-noise self-calibrating dynamic comparator for high-speed ADCs. In IEEE Asian solid-state circuits conference (pp. 269–272).Google Scholar
  13. 13.
    Bettini, L., Christen, T., Burger, T., & Huang, Q. (2015). A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 5(4), 525–536.CrossRefGoogle Scholar
  14. 14.
    Yao, L., Steyaert, M., & Sansen, W. (2005). A 1-V, 1-MS/s, 88-dB sigma-delta modulator in 0.13 µm digital CMOS technology. In 2005 Symposium on VLSI circuits (pp. 180–183).Google Scholar
  15. 15.
    Tsang, C. W., Chiu, Y., & Nikolic, B. (2006). A 1.2 V, 10.8 mW, 500 kHz sigma-delta modulator with 84 dB SNDR and 96 dB SFDR. In 2006 Symposium on VLSI circuits (pp. 162–163).Google Scholar
  16. 16.
    Vadipour, M., Chen, C., Yazdi, A., Nariman, M., Li, T., Kilcoyne, P., & Darabi, H. (2008). A 2.1mW/3.2mW delay-compensated GSM/WCDMA ΣΔ analog-digital converter. In 2008 Symposium on VLSI circuits (pp. 180–181).Google Scholar
  17. 17.
    Crombez, P., Van der Plas, G., Steyaert, M., & Craninckx, J. (2010). A single-bit 500 kHz-10 MHz multimode power-performance scalable 83–67 dB DR CT ΔΣ for SDR in 90nm digital CMOS. IEEE Journal of Solid-State Circuits, 45(6), 1159–1171.CrossRefGoogle Scholar
  18. 18.
    Ke, Y., Gao, P., Craninckx, J., Van der Plas, G., & Gielen, G. (2010). A 2.8-to-8.5mW GSM/bluetooth/UMTS/DVB-H/WLAN fully reconfigurable CT ΔΣ with 200 kHz to 20 MHz BW for 4G radios in 90nm digital CMOS. In 2010 Symposium on VLSI circuits (pp. 153–1541).Google Scholar
  19. 19.
    Aguirre, P., & Susin, A. (2018). A 0.6-V, 74.2-dB DR continuous-time sigma-delta modulator with inverter-based amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(10), 1310–1314. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of RF- and OE-ICsSoutheast UniversityNanjingChina

Personalised recommendations