Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 2, pp 175–185 | Cite as

A 230 μW built-in on-chip auto-calibrating RF amplitude detector in 65 nm CMOS

  • Yonatan Kifle
  • Mohammad AlhawariEmail author
  • Sleiman Bou-Sleiman
  • Hani Saleh
  • Baker Mohammad
  • Mohammed Ismail


In this paper, a built-in-self-calibration RF amplitude detector circuit in 65 nm CMOS is presented. The proposed architecture makes use of two detector replicas with a feedback control system to perform the self-calibration. The system is capable of detecting RF peak amplitudes range of 0–0.6 Vp with a conversion gain of − 3 V/V. The proposed system has a wide dynamic range that can auto-corrects the RF detector to less than 10% across process and temperature variations. This architecture is implemented in standard 65 nm 1P7 M CMOS process. Comprehensive silicon measurement results show that the self-calibration structure improves the detection error of the non-calibrated RF amplitude detector by a maximum of 71% at only 230 μW overall power consumption. The proposed system can be used to calibrate the variations in circuits within an RF transceiver such as LNA, Mixers, oscillators etc.


Amplitude detector Built-in-self-test (BiST) Detection error RF detector and variability compensation 



  1. 1.
    Valdes-Garcia A., Silva-Martinez J., & Sanchez-Sinencio E. (2006). On-Chip Testing Techniques for RF Wireless Transceivers. In IEEE Design & Test of Computers, 23(4), 268–277.Google Scholar
  2. 2.
    Ferrario J., Wolf R., & Moss S. (2003). Architecting millisecond test solutions for wireless phone RFICs. In Proceedings of the IEEE international test conference, pp. 1325–1332.Google Scholar
  3. 3.
    Bhattacharya, S., & Chatterjee, A. (2004). Use of embedded sensors for built-in-test of RF circuits. In Proceedings of the IEEE international test conference, pp. 801–809.Google Scholar
  4. 4.
    Zhang, C., Gharpurey, R., Abraham, & J. A. (2008). Low cost RF receiver parameter measurement with On-Chip amplitude detectors. In 26th VLSI test symposium, IEEE, pp. 203–208.Google Scholar
  5. 5.
    Yen-Chih, H., Hsieh, H., & Lu, L. (2008). A build-in self-test technique for RF low-noise amplifiers. IEEE Transactions on Microwave Theory and Techniques, 56(5), 1035–1042.CrossRefGoogle Scholar
  6. 6.
    De La Cruz-Blas, C. A., Lopez-Martin, A., Carlosena, A., & Ramirez Angulo, J. (2005). 1.5-V current-mode CMOS true RMS-DC converter based on class-AB transconductors. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(7), 376–379.CrossRefGoogle Scholar
  7. 7.
    Jonsson, F., & Olson, H. (2004). RF detector for on-chip amplitude measurements. Electronics Letters, 40(20), 1239–1240.CrossRefGoogle Scholar
  8. 8.
    Valdes-Garcia, A., Venkatasubramanian, R., Srinivasan, R., Silva- Martinez, J., & Sánchez-Sinencio, E. (2005). A CMOS RF RMS detector for built-in testing of wireless receivers. In Proceedings of the IEEE VLSI test symposium, pp. 249–254.Google Scholar
  9. 9.
    Hsieh, H.-H., & Lu, L.-H. (2006). Integrated CMOS power sensors for RF BIST applications. In Proceedings of the IEEE VLSI test symposium, pp. 1–5.Google Scholar
  10. 10.
    Acharya, V., et al. (2009) On-chip RMS detector using CMOS Quad for RF testing. In Silicon monolithic integrated circuits in RF systems, pp. 1–4.Google Scholar
  11. 11.
    Valdes-Garcia, A., et al. (2008). A broadband CMOS amplitude detector for on-chip RF measurements. IEEE Transactions on Instrumentation and Measurement, 57(7), 1470–1477.CrossRefGoogle Scholar
  12. 12.
    Bou-Sleiman, S., Ismail, M. (2009). A CMOS amplitude detector for RF-BIST and calibration. In 16th IEEE international conference on electronics, circuits, and systems (ICECS), IEEE, pp. 807–810.Google Scholar
  13. 13.
    Barabino, N., & Silveira, F. (2015). Digitally assisted CMOS RF detectors with self-calibration for variability compensation. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1676–1682.CrossRefGoogle Scholar
  14. 14.
    Bou-Sleiman, S., Ismail, M. (2011). Built-in-self-test and digital self-calibration for RF SoCs. ISBN 978-1-4419-9547-6, Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Khalifa Semiconductor Research Center (KSRC)Khalifa University of Science and TechnologyAbu DhabiUAE
  2. 2.Linköping UniversityLinköpingSweden
  3. 3.Wayne Center for Integrated Circuits and Systems (WINCAS)Wayne State UniversityDetroitUSA
  4. 4.Abu DhabiUAE
  5. 5.Intel CorporationPhoenixUSA

Personalised recommendations