Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 2, pp 255–265 | Cite as

Low power CMOS variable gain amplifier design for a multistandard receiver WLAN/WIMAX/LTE

  • Sawssen LahianiEmail author
  • Houda Daoud
  • Samir Ben Salem
  • Mourad Loulou
Article
  • 78 Downloads

Abstract

This paper deals with a new compact low-power variable gain amplifier (VGA) architecture design for wireless communication multistandard receivers. The proposed VGA is a two stages cascaded topology that includes a folded cascode operational transconductance amplifier stage and a VGA core. The new “cell” structure has been introduced to demonstrate the performance enhancement with the use of only one VGA stage. The heuristic method is used to optimize the proposed circuit performance for high gain, low noise and low power consumption. This circuit is implemented and simulated using device-level description of TSMC 0.18 µm CMOS process. The simulation results indicate that the new VGA achieves a gain ranging from a minimum of − 25 dB toa maximum reaching 79 dB with a large bandwidth of 200 MHz. The designed VGA circuit acquires a noise figure less than 18 dB, an input referred noise of around 9.3 nV2/Hz and the third order intercept point measured at the input (IIP3) of 15 dBm. The proposed circuit consumes only 0.5 mW under 1.8 V supply voltage.

Keywords

VGA cell FC OTA Multistandard receiver Optimization heuristic High gain Low power consumption 

Notes

References

  1. 1.
    WiMAX Forum: www.wimaxforum.org.
  2. 2.
    Chawanonphithakn, C., & Phongcharoenpanich, Y. (2015). Design of triple-band antenna using S-shaped patch fed by cross strip line for WLAN and WiMAX application. IEEJ Transactions on Electrical and Electronic Engineering, 10, 491–497.CrossRefGoogle Scholar
  3. 3.
    Rodriguez, S., Rusu, A., & Ismail, M (2009). WiMAX/LTE receiver front-end in 90 nm CMOS. In IEEE international symposium on circuits and systems (ISCAS). Google Scholar
  4. 4.
    Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11n. (2009) Part 11.Google Scholar
  5. 5.
    Rodriguez, S., Atallah, J., Rusu, A., & Ismail, M (2010). A 2.3-GHz to 5.8-GHz CMOS receiver front-end for WiMAX/WLAN. In IEEE international conference on electronics circuits and systems (ICECS) (pp. 1068–1071).Google Scholar
  6. 6.
    Ergen, M. (2009). Mobile broadband: Including WiMAX and LTE. New York, NY: Springer.CrossRefGoogle Scholar
  7. 7.
    Han, D. O., Kim, J. H., & Park, S. G. (2010). A dual band CMOS receiver with hybrid down conversion mixer for IEEE 802.11a/b/g/n WLAN applications. IEEE Microwave Wireless Components Letter, 20, 235–237.CrossRefGoogle Scholar
  8. 8.
    Rodriguez, S., & Rusu, A. (2011). A 65 nm CMOS current-mode receiver front-end. In IEEE international symposium on circuits and systems (ISCAS). Google Scholar
  9. 9.
    Jeon, O., Fox, R. M., & Myers, B. A. (2006). Analog AGC circuitry for a CMOS WLAN receiver. IEEE Journal Solid-State Circuits, 41, 2291–2300.CrossRefGoogle Scholar
  10. 10.
    Chen, Z., Zheng, Y., Choong, F. C., & Je, M. (2012). A low power variable-gain amplifier with improved linearity: analysis and design. IEEE Transactions on Circuits and Systems I: Regular Papers, 59, 2176–2185.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lahiani, S., Ben Salem, S., Daoud, H., & Loulou, M. (2017). dB-linear variable gain amplifier design in 0.18 μm process with optimization. Asian Journal of Applied Sciences, 10, 151–158.CrossRefGoogle Scholar
  12. 12.
    Wang, J., & Zhu, Z. (2016). An improved-linearity, single-stage variable-gain amplifier using current squarer for wider gain range. Circuits System and Signal Processing, 35, 4550–4566.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ayadi, D., Lahiani, S., Ben Salem, S., & Loulou, M. (2015). Variable gain amplifier for mobile WiMAX receiver. Journal of Microelectronics, Electronic Components and Materials, 45, 22–28.Google Scholar
  14. 14.
    Wang, Y., Afshar, B., Cheng, T. Y., Gaudet, V., & Niknejad, A. (2008). A 2.5 mW inductorless wideband VGA with dual feedback DC-offset correction in 90 nm CMOS technology. In IEEE radio frequency integrated circuits symposium (RFIC) (pp. 91–94).Google Scholar
  15. 15.
    Motamed, A., Hwang, C., & Ismail, M. (1998). A low voltage low power wide range CMOS variable gain amplifier. IEEE Transactions on Circuits and Systems II, 45, 800–811.CrossRefGoogle Scholar
  16. 16.
    Motamed, A., Hwang, C., & Ismail, M. (1997). Exponential CMOS current voltage converter. Electronics Letters, 33, 998–1000.CrossRefGoogle Scholar
  17. 17.
    Thanachayanont, A. (2008). Low-voltage compact CMOS variable gain amplifier. International Journal of Electronics and Communications, 62, 413–420.CrossRefGoogle Scholar
  18. 18.
    Kumar, T., Ma, K., & Yeo, K. S. (2013). Temperature-compensated dB-linear digitally controlled variable gain amplifier with DC offset cancellation. IEEE Transactionson Microwave Theoryand Techniques, 61, 2648–2661.CrossRefGoogle Scholar
  19. 19.
    Toumazou, C., Lidgey, F. J., & Haigh, D. G. (1993). Analog integrated circuits: The current mode approach. In IEEE circuit and systems series 2.Google Scholar
  20. 20.
    Lahiani, S., Daoud, H., Ben Salem, S., & Loulou, M. (2017). Low voltage low power folded cascode OTA design for RF applications. International Journal of Applied Engineering Research, 12, 4029–4032.Google Scholar
  21. 21.
    Fakhfakh, M., Cooren, Y., Sallem, A., Loulou, M., & Siarry, P. (2010). Analog circuit design optimization through the particle swarm optimization technique. Analog Integrated Circuit Signal Processing, 63, 71–82.CrossRefGoogle Scholar
  22. 22.
    Onet, R., Neag, M., Kovács, I., Topa, M., Rodriguez, S., & Rusu, A. (2014). Compact variable gain amplifier for a multistandard WLAN/WiMAX/LTE receiver. IEEE Transactions on Circuits and Systems, 61, 247–257.CrossRefGoogle Scholar
  23. 23.
    Elwan, H. O., Tarim, B., & Ismail, M. (1998). A digitally controlled dB linear CMOS AGC for mixed-signal application. IEEE Circuits and Devices Magazine, 8, 11.Google Scholar
  24. 24.
    Elwan, H., Adawi, A., Ismail, M., Olsson, H., & Soliman, A. (1999). Digitally controlled dB-linear CMOS variable gain amplifier. Electronics Letters, 35, 1725–1727.CrossRefGoogle Scholar
  25. 25.
    Fakhfakh, M., Loulou, M., & Masmoudi, N. (2007). Optimizing performances of switched current memory cells through a heuristic. Journal of Analog Integrated Circuits ad Signal Processing, 50, 115–126.CrossRefGoogle Scholar
  26. 26.
    Lahiani, S., Ben Selem, S., Daoud, H., & Loulou, M. (2018). A CMOS low-power digital variable gain amplifier design for a cognitive radio receiver “application for IEEE 802.22 standard”. Journal of Circuits, Systems, and Computers, 27, 1–18.CrossRefGoogle Scholar
  27. 27.
    Ben Salem, S., Fakhfakh, M., Loulou, M., Loumeau, P., & Masmoudi, N. (2006). A high performances CMOS CCII and high frequency applications. Analog Integrated Circuits and Signal Processing, 49, 71–78.CrossRefGoogle Scholar
  28. 28.
    Kwon, J., & Ryn, S. (2011). An iherently dB-linear all-CMOS variable gain amplifier. Journal of Semiconductor Technology and Science, 11, 336–343.CrossRefGoogle Scholar
  29. 29.
    Liu, H., Zhu, X., Boon, C. C., & He, X. F. (2015). Cell-based variable-gain amplifiers with accurate dB-linear characteristic in CMOS 0.18 μm technology. IEEE Journal of Solid-State Circuits, 50, 586–596.CrossRefGoogle Scholar
  30. 30.
    Baghtash, H. F., & Ayatollahi, A. (2014). Zero-pole, reposition based, 0.95-mW, 68-dB, linear-in-dB, constant bandwidth variable gain amplifier. Circuits System and Signal Processing, 33, 331353–331368.Google Scholar
  31. 31.
    Inyoung, C., Heesong, S., & Bumman, K. (2013). Accurate dB-linear variable gain amplifier with gain error compensation. IEEE Journal of Solid-State Circuits, 48, 456–464.CrossRefGoogle Scholar
  32. 32.
    Gungordu, A. D., & Tarim, N. (2018). Design of a constant-bandwidth variable-gain amplifier for LTE receivers. Analog Integrated Circuits and Signal Processing, 97, 27–38.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electronic and Communications Group, Laboratory of Electronics and Technologies of Information (LETI), National School of Engineers of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations