Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 585–599 | Cite as

RF–DC converter and DC–DC converter for UHF and microwave wireless power transfer (UWPT/MWPT)

  • Yo-Sheng LinEmail author
  • Kai-Siang Lan
Article
  • 19 Downloads

Abstract

In this work, we propose a UHF/microwave wireless power transfer (UWPT/MWPT) and communication module (WPT-communication module) for smart spindle. The WPT-communication module can integrate with sensors, such as force/torque, temperature, displacement or vibration sensor, to form a WPT-communication sensor module. The WPT receiver constitutes a UWPT/MWPT receiving antenna, an RF–DC converter and a DC–DC converter. A novel UWPT/MWPT RF–DC converter with power conversion efficiency (PCE) of 86.5–92.2% is demonstrated in the condition of load reistance of 20 Ω and input signal power and frequency of 0.2 W and 0.915–10 GHz, respectively. It can integrate with the 915 MHz UWPT antenna and the DC–DC converter (with the proposed high-speed phase dectector) to form a UWPT receiver, or integrate with the 10 GHz (or 2.4 GHz) MWPT antenna and the DC–DC converter to form a MWPT receiver. A UWPT-communication receiver is designed and implemented. The corresponding PCE is 70%, one of the best results ever reported for UWPT/MWPT receivers.

Keywords

Wireless power transfer (WPT) Communication Power conversion efficiency UHF Microwave RF–DC converter DC–DC converter Smart spindle 

Notes

Acknowledgements

This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under Contracts MOST105-2221-E-260-025-MY3 and MOST106-2221-E-260-025-MY2. The authors are very grateful for the support from Taiwan Semiconductor Research Institute (TSRI) for chip fabrication and high-frequency measurements.

References

  1. 1.
    Ishino, S., Takano, I., Yano, K., & Shinohara, N. (2016). Frequency-division techniques for microwave power transfer and wireless communication system with closed waveguide. In IEEE wireless power transfer conference (WPTC) (pp. 1–4).Google Scholar
  2. 2.
    Ishikawa, R., & Honjo, K. (2014). Efficient supply power control by PWM technique for microwave wireless power transfer systems. In Asia-Pacific microwave conference (APMC) (pp. 1101–1103).Google Scholar
  3. 3.
    Kashimura, R., Seki, T., & Sakaguchi, K. (2017). A study of rectenna receiving area division for microwave wireless power transfer system. In Asia-Pacific microwave conference (APMC) (pp. 229–232).Google Scholar
  4. 4.
    Lin, Y. S., Hu, C. H., Chang, C. H., & Tsao, P. C. (2018). One- and two-dimensional antenna arrays for microwave WPT systems and dual-antenna transceivers. International Journal of Electronics,105(6), 993–1010.Google Scholar
  5. 5.
    Chen, J. J., Lien, Y. C., Kuo, C. L., & Wu, W. J. (2015). Self-powered wireless temperature sensor with piezoelectric energy harvester fabricated with metal-MEMS process. In IEEE international conference on nano/micro engineered and molecular systems (NEMS) (pp. 619–622).Google Scholar
  6. 6.
    Chang, L. C., & Lee, D. S. (2012). The development of a monitoring system using a wireless and powerless sensing node deployed inside a spindle. Sensors,12(1), 24–41.CrossRefGoogle Scholar
  7. 7.
    Zhang, L., Gao, R. X., & Lee, K. B. (2006). Spindle health diagnosis based on analytic wavelet enveloping. IEEE Transactions on Instrumentation and Measurement,55(5), 1850–1858.CrossRefGoogle Scholar
  8. 8.
    Gil, J., Kim, J. H., Kim, C. S., Park, C., Park, J., Park, H., et al. (2014). A fully integrated low-power high-coexistence 2.4-GHz ZigBee transceiver for biomedical and healthcare applications. IEEE Transactions on Microwave Theory and Techniques,62(9), 1879–1889.CrossRefGoogle Scholar
  9. 9.
    Prummel, J., Papamichail, M., Willms, J., Todi, R., Aartsen, W., Kruiskamp, W., et al. (2015). A 10 mW bluetooth low-energy transceiver with on-chip matching. IEEE Journal of Solid-State Circuits,50(12), 3077–3088.CrossRefGoogle Scholar
  10. 10.
    CC2540F128, CC2540F256. (2012). 2.4-GHz bluetooth® low energy system-on-chip. Texas Instruments. www.ti.com.
  11. 11.
    Lin, Y. S., Wang, C. C., Liao, Y. C., & Lu, S. S. (2014). Design and implementation of intra-body communication (IBC) hub/alarm unit in IBC platform for fall prevention system. Microwave and Optical Technology Letters,56(10), 2345–2351.CrossRefGoogle Scholar
  12. 12.
    Lin, Y. S. (2014). Enhancement of sensitivity of RF modules for wireless health care and home security systems. Microwave and Optical Technology Letters,56(11), 2563–2568.CrossRefGoogle Scholar
  13. 13.
    Lin, Y. T., Lin, Y. S., Chen, C. H., Chen, H. C., Yang, Y. C., & Lu, S. S. (2011). A 0.5 V biomedical system-on-a-chip for intra-body communication system. IEEE Transactions on Industrial Electronics,58(2), 690–699.CrossRefGoogle Scholar
  14. 14.
    Chen, C. H., Hwang, R. Z., Huang, L. S., Lin, S. M., Chen, H. C., Yang, Y. C., et al. (2009). A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics. IEEE Transactions on Biomedical Engineering,56(2), 462–470.CrossRefGoogle Scholar
  15. 15.
    Ishikawa, R., & Honjo, K. (2013). Reversible high efficiency amplifier/rectifier circuit for wireless power transmission system. In Asia-Pacific microwave conference (APMC) (pp. 74–76).Google Scholar
  16. 16.
    Huang, Y., Shinohara, N., & Mitani, T. (2014). A constant efficiency of rectifying circuit in an extremely wide load range. IEEE Transactions on Microwave Theory and Technique,62(4), 986–993.CrossRefGoogle Scholar
  17. 17.
    Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21–29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques,60(8), 2590–2604.CrossRefGoogle Scholar
  18. 18.
    Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques,58(2), 287–296.CrossRefGoogle Scholar
  19. 19.
    Chen, H. K., Lin, Y. S., & Lu, S. S. (2010). Analysis and design of a 1.6–28 GHz compact wideband LNA in 90 nm CMOS using a π-match input network. IEEE Transactions on Microwave Theory and Techniques,58(8), 2092–2104.CrossRefGoogle Scholar
  20. 20.
    Guo, Q., Zhai, Y., Tan, X., & Min, H. (2019). An on-chip configurable receiver with > 55-dB Tx leakage suppression for UHF RFID reader. IEEE Microwave and Wireless Components Letters,29(5), 357–359.CrossRefGoogle Scholar
  21. 21.
    Setiadi, C., Rohadi, E., Sarosa, M., Amalia, & Setiawan, A. (2017). Numerical analysis and design of inverted L antenna for UHF TV receiver application. In IEEE international conference on sustainable information engineering and technology (SIET) (pp. 471–474).Google Scholar
  22. 22.
    Feng, X., Wang, X., Zang, X., Ge, B., Liu, S., Shen, J., Zhong, J., & Liu, Y. (2009). A mobile UHF RFID reader with high linearity receiver. In IEEE international conference on ASIC (pp. 537–540).Google Scholar
  23. 23.
    Xu, Y., Shi, C., Jin, W., Yu, H., Tao, Y., Hong, L., & Lai, Z. (2005). A silicon BiCMOS single-chip UHF receiver design. In IEEE international conference communications, circuits, and systems (pp. 1295–1299).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Chi Nan UniversityPuliTaiwan, ROC

Personalised recommendations