Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 100, Issue 3, pp 577–592 | Cite as

A 42/84-GHz multi-ring rotary traveling-wave oscillator design in 0.13-µm BiCMOS

  • Fazle RabbiEmail author
  • Zhijian Xie
  • Numan S. Dogan
Article
  • 52 Downloads

Abstract

A multi-ring rotary traveling-wave oscillator (RTWO) is presented. The oscillation frequency of the main RTWO ring is designed for 42-GHz with 2-GHz tunability. Multi-phase signals generated in the main RTWO ring drive doubler circuits to generate second harmonic signals. The transformer used in each doubler circuit produces differential signals that are injected into the outer ring. Differential signals in the secondary terminals of the transformers are combined by coupled co-planar strip-line to support traveling-wave in the second ring. Bi-CMOS 0.13-µm technology is used to design and implement the multi-ring RTWO circuit. The chip area is 0.585-mm2. Total power consumption is 68-mW. SiGe HBT has been preferred over nMOS transistors to implement the gain stages, frequency doublers and the buffer circuits due to high fT and fmax of the SiGe HBTs. The measured frequency of oscillation is 42.24-GHz and 84.48-GHz with 5.6% tuning range and output power is − 20 dBm and − 45 dBm respectively. Phase noise at the main RTWO ring is − 97.5 dBc/Hz at 10 MHz.

Keywords

Millimeter-wave circuits Multi-ring RTWO SiGe HBTs Oscillators Frequency doublers Co-planar coupled microstrip lines 

Notes

Acknowledgements

The authors thank the Army Research Office, U.S. Army Research Lab for funding this project, Global Foundry for chip fabrication (Design Number 94381), Qorvo for wire bonding and Bradley Department of Electrical and Computer Engineering, Virginia Tech for chip testing.

Funding

This work was supported by the U.S. Army Research Office (ARO) under Grant W911NF- 13-1-0114.

References

  1. 1.
    Andress, W., & Ham, D. (2004). Recent developments in standing-wave oscillator design: Review. In IEEE radio frequency and integrated circuits symposium (pp. 119–122).Google Scholar
  2. 2.
    Lao, Z., Jensen, J., Guinn, K., & Sokolich, M. (2004). 80-GHz differential VCO in InP SHBTs. IEEE Microwave and Wireless Components Letters, 14(9), 407–409.CrossRefGoogle Scholar
  3. 3.
    Rabbi, F., Arafat, Y., & Khan, M. Z. R. (2012). Early voltage and current gain of Si1−yGey heterojunction bipolar transistor. Microelectronics and Solid State Electronics, 1, 1–8.Google Scholar
  4. 4.
    Wood, J., Edwards, T., & Lipa, S. (2001). Rotary travelling wave oscillator arrays: A new clock technology. IEEE Journal of Solid-State Circuits, 36(II), 1654–1665.CrossRefGoogle Scholar
  5. 5.
    Nouri, N., & Buckwalter, J. F. (2011). A 45-GHz rotary-wave voltage-controlled oscillator. IEEE Transactions on Microwave Theory and Techniques, 59(2), 383–392.CrossRefGoogle Scholar
  6. 6.
    Moroni, A., Genesi, R., & Manstretta, D. (2014). Analysis and design of a 54 GHz distributed hybrid wave oscillator array with quadrature outputs. IEEE Journal of Solid-State Circuits, 49, 1158–1172.CrossRefGoogle Scholar
  7. 7.
    Wu, L., Sebsebie, R., Kirkman-Bey, M., Aidoo, M., Xie, Z., Dogan, N. S. (2014). Design of 110–152 GHz rotary traveling wave oscillators in 65 nm CMOS technology. In IEEE SOUTHEASTCON 2014.Google Scholar
  8. 8.
    Bai, Z., Zhou, X., Mason, R. D., & Allan, G. (2014). Low-phase noise clock distribution network using rotary traveling-wave oscillators and built-in self-test phase tuning technique. IEEE Transactions on Circuits and Systems, 62, 41–45.Google Scholar
  9. 9.
    Smith, R., Ansari, K., Rogers, J., & Plett, C. (2016). Tuning of the relative phases of a rotary travelling wave oscillator. IEEE Microwave and Wireless Components Letters, 26, 610–612.CrossRefGoogle Scholar
  10. 10.
    Kuttappa, R., Filippini, L., Lerner, S., & Taskin, B. (2017). Stability of rotary traveling wave oscillators under process variations and NBTI. In IEEE International symposium on circuits and systems (ISCAS).Google Scholar
  11. 11.
    González, R. M. H., Aranda, M. L., Martínez, L. H., & Díaz, C. A. S. (2017). Topology and discontinuities effect on CMOS rotary traveling wave oscillators. In International conference on electrical engineering, computing science and automatic control (CCE).Google Scholar
  12. 12.
    Vigilante, M., & Reynaert, P. (2018). A coupled-RTWO-based subharmonic receiver front-end for 5G E-band backhaul links in 28 nm bulk CMOS. In IEEE International solid-state circuits conference (ISSCC).Google Scholar
  13. 13.
    Likhterov, B., & Belenky, A. (2018). Traveling-wave ring oscillator simulations and prototype measurements for a new architecture for a transmission line based oscillator. In IEEE International conference on the science of electrical engineering in Israel (ICSEE).Google Scholar
  14. 14.
    Shivanna, B., Hamed, A., Saeed, M., Chalermwisutkul, S., & Negra, R. (2019). Design approach for compact rotary travelling-wave oscillator based on lumped phase shift networks. In German microwave conference (GeMiC).Google Scholar
  15. 15.
    Soliman, Y., & Mason, R. (2010). Application of subharmonic injection locking of LC oscillators to LO-based phase-shifting phased-array architectures. IEEE Transactions on Microwave and Theory Techniques, 58(12), 3475–3484.Google Scholar
  16. 16.
    Tual, S. L., Singh, P. N., Curis, C., & Dautriche, P. (2014). A 20 GHz-BW 6b 10 GSps 32 mW time-interleaved SAR ADC with master T&H in 28 nm UTBB FDSOI technology. In IEEE International solid-state circuits conference (pp. 378–379).Google Scholar
  17. 17.
    Meghelli, M. (2006). A 10-Gbps 5-Tap-DFE/4-Tap FFE transceiver in 90 nm CMOS. In IEEE International solid-state circuits conference technology (pp. 80–81).Google Scholar
  18. 18.
    Kimura, H. (2004). A 28 Gbps 560 mW multi-standard serdes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS. IEEE Journal of Solid-State Circuits, 49, 1–13.Google Scholar
  19. 19.
    Grenat, A. (2014). Adaptive clocking system for improved power efficiency in a 28 nm x86-64 microprocessor. In IEEE International solid-state circuits conference (pp. 106–107).Google Scholar
  20. 20.
    Bhai, Z. (2016). A 2 GHz pulse injection locked rotary traveling wave oscillator. IEEE Transactions on Microwave Theory and Techniques, 64, 1854–1866.CrossRefGoogle Scholar
  21. 21.
    Abbasalizadeh, S., & Miar-Naimi, H. (2018). A phase tunable rotary traveling wave oscillator: Analysis and calibration. IEEE Transactions on Circuits and Systems, 65, 2917–2928.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hsieh, H. H., Hsu, Y. C., & Lu, L. H. (2007). A 15/30-GHz dual-band multiphase voltage-controlled oscillator in 0.18-μm CMOS. IEEE Transactions on Microwave Theory and Techniques, 55(3), 474–483.CrossRefGoogle Scholar
  23. 23.
    Morgan, M., & Weinreb, S. (2001). A full waveguide band MMIC tripler for 75–110 GHz. In IEEE MTT-S International microwave symposium digest (Vol. 1, pp. 103–106).Google Scholar
  24. 24.
    Mishra, C., Pfeiffer, U., Rassel, R., & Reynolds, S. (2007). Silicon Schottky diode power converters beyond 100 GHz. In IEEE radio frequency integrated circuits symposium (pp. 547–550).Google Scholar
  25. 25.
    Pfeiffer, U., Mishra, C., Rassel, R., Pinkett, S., & Reynolds, S. (2008). Schottky barrier diode circuits in silicon for future millimeter-wave and terahertz applications. IEEE Transcation on Microwave Theory and Techniques, 56(2), 364–371.CrossRefGoogle Scholar
  26. 26.
    Emadi, T., Vukusic, J., Ingvarson, M., Olsen, A., Bryllert, T., Kollberg, E., et al. (2004). High power HBV multipliers for F-and G-band applications. In Digest joint 29th international conference on infrared millimeter waves and 12th international conference on terahertz electronics (pp. 319–320).Google Scholar
  27. 27.
    Xiao, Q., Duan, Y., Hesler, J., Crowe, T., & Weikle, R. M. (2004). A 5-mW and 5% efficiency 210 GHz InP-based heterostructure barrier varactor quintupler. IEEE Microwave and Wireless Components Letters, 14, 159–161.CrossRefGoogle Scholar
  28. 28.
    Olsen, A., Ingvarson, M., Alderman, B., & Stake, J. (2004). A 100-GHz HBV frequency quintupler using microstrip elements. IEEE Microwave and Wireless Components Letters, 14, 493–495.CrossRefGoogle Scholar
  29. 29.
    Chen, A. Y. K., Baeyens, Y., & Lin, Y. K. C. J. (2009). A 36–80 GHz high gain millimeter-wave double-balanced active frequency doubler in SIGe BICMOS. IEEE Microwave and Wireless Components Letters, 19(9), 572–574.CrossRefGoogle Scholar
  30. 30.
    Tsai, P. H., Lin, Y. H., Kuo, J. L., Tsai, Z. M., & Wang, H. (2013). Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand balun. IEEE Transactions on Microwave Theory and Techniques, 61(5), 1913–1923.CrossRefGoogle Scholar
  31. 31.
    Vigilante, M., & Reynaert, P. (2018). A coupled-RTWO-based subharmonic receiver front end for 5G E-band backhaul links in 28-nm bulk CMOS. IEEE Journal of Solid-State Circuits, 99, 1–2.Google Scholar
  32. 32.
    Mahony, F. O., Yue, C. P., Horowitz, M., & Wong, S. S. (2003). 10-GHz clock distribution using coupled standing-wave oscillators. In IEEE International solid-state circuits conference (vol. 1, pp. 428–504).Google Scholar
  33. 33.
    Lee, J., & Razavi, B. (2003). A 40-Gb/s clock and data recovery circuit in 0.18-μm CMOS technology. IEEE Journal of Solid-State Circuits, 38(12), 2181–2190.CrossRefGoogle Scholar
  34. 34.
    Ceperley, P. H. (1987). Split mode travelling wave ring-resonator. U. S. Patent 4686407, August 1987.Google Scholar
  35. 35.
    Rabbi, F., Naher, J., Xie, Z., & Dogan, N. S. (2016). 3-D vertical solenoid inductors by electrodeposition techniques. In International conference on electrical and computer engineering (pp. 147–150).Google Scholar
  36. 36.
    Rabbi, F., Arafat, Y., & Khan, M. Z. R. (2011). Analytical modelling of early voltage and current gain of Si1−yGey heterojunction bipolar transistor. In Electronic devices, systems and applications (ICEDSA) (pp. 53–58).Google Scholar
  37. 37.
    Baek, D., Kim, J., Kang, D., & Hong, S. (2003). Low phase noise Ku band frequency multiplied and divided MMIC VCOs using InGaP/GaAs HBT technology. In IEEE MTT-S International microwave symposium digest (Vol. 3, pp. 2193–2196).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentNorth Carolina A&T State UniversityGreensboroUSA

Personalised recommendations