Advertisement

A Ku-band dual control path frequency synthesizer using varactorless Q-enhanced LC-type VCO

  • Jun-Hong WengEmail author
  • Kai-Wen Teng
Article
  • 8 Downloads

Abstract

This study focused on the design principle and implementation of a high-frequency, wide-range frequency synthesizer by using a dual control path phase-lock loop (PLL) and a varactorless oscillator controlled by inductive–capacitive (LC-type) voltage (i.e., a voltage-controlled oscillator, VCO). Without a varactor in the LC tank, the tuned-transducer oscillator with Q-enhanced functionality can easily arrive at the requirements of high-frequency wide-range low-noise operations. We utilized a difference tuned varactorless VCO to create two different KVCOs and applied it to a dual control path PLL architecture to obtain wide tuning range and more favorable phase noise. In addition, a high-speed current-mode logic divider was employed given its high speed (because of the use of a transformer inductor), extremely high operation frequency, and wide-range. The proposed PLL was assembled using the standard 0.13-μm CMOS technology on a 0.95 × 1.05 mm2 chip. The PLL dissipated 40 mW at a 1.2 V supply. The measurement of phase noise at 17.64 GHz was − 98.12 dBc/Hz at a 1 MHz offset.

Keywords

Frequency synthesizer Phase-lock loop (PLL) High-speed current-mode logic (FSCML) Quality factor Tuned transducer Varactorless Voltage-controlled oscillator (VCO) 

Notes

Acknowledgements

This study was supported by Tunghai University, Taiwan, R.O.C. The author would like to thank the National Chip Implementation Center (CIC), Taiwan, R.O.C., for fabricating the chip. This study was also supported by the Ministry of Science and Technology (MOST 106-2221-E-029-028), Taiwan, R.O.C.

Funding

The study was funded by the Ministry of Science and Technology (Grant Number MOST 106-2221-E-029-028), Taiwan, R.O.C.

Compliance with ethical standards

Conflict of interest

The author declares there are no conflicts of interest.

Research involving human participants and/or animals

There were not any human participants and/or animals in the study.

Informed consent

There were not any informed consent in the study.

References

  1. 1.
    Bae, J., Yan, L., & Yoo, H. J. (2011). A low energy injection-locked FSK transceiver with frequency-to-amplitude conversion for body sensor applications. IEEE Journal of Solid-State Circuits, 46(4), 928–937.CrossRefGoogle Scholar
  2. 2.
    Razavi, B. (2008). A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider. IEEE Journal of Solid-State Circuits, 43(2), 477–485.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Yang, C. Y., & Tsai, M. T. (2006). High-frequency low-noise voltage-controlled LC-tank oscillators using a tunable inductor technique. IEICE Transactions on Electronics, E89-C(11), 1567–1574.CrossRefGoogle Scholar
  4. 4.
    Kwok, K., & Long, J. R. (2007). A 23-to-29 GHz transconductor-tuned VCO MMIC in 0.13 μm CMOS. IEEE Journal of Solid-State Circuits, 42(12), 2878–2886.CrossRefGoogle Scholar
  5. 5.
    Yang, C.-Y., Chang, C.-H., & Weng, J.H. (2013). A 35-GHz frequency synthesizer using frequency doubling and phase rotating technology. In International symposium on communications and information technologies (ISCIT), Samui Island, Thailand (pp. 266–270).Google Scholar
  6. 6.
    Lin, L., & Gray, P. R. (2000). A 1.4 GHz differential low-noise CMOS frequency synthesizer using a wideband PLL architecture. In IEEE international solid-state circuits conference digest of technical paper, San Francisco, CA (pp. 204–205, 458).Google Scholar
  7. 7.
    Koo, Y., Huh, H., Cho, Y., Lee, J., Park, J., Lee, K., et al. (2002). A fully integrated CMOS frequency synthesizer with charge-averaging charge pump and dual-path loop filter for PCS- and cellular-CDMA wireless systems. IEEE Journal of Solid-State Circuits, 37, 536–542.CrossRefGoogle Scholar
  8. 8.
    Sarang, K., Khayrollah, H., & Abdollah, K. (2015). A wide-range low-jitter PLL based on fast-response VCO and simplifed straightforward methodology of loop stabilization in integer-N PLLs. Journal of Circuits, Systems, and Computers, 24(7), 1550104-1–1550104-24.Google Scholar
  9. 9.
    Fong, N. H. W., Plouchart, J. O., Zamdmer, N., Liu, D., Wagner, L. F., Plett, C., et al. (2003). A 1-V 3.8-5.7-GHz wide-band VCO with differential tuned accumulation MOS varactors for common-mode noise rejection in CMOS SOI technology. IEEE Transactions on Microwave Theory and Techniques, 51(8), 1952–1959.CrossRefGoogle Scholar
  10. 10.
    Tang, Z., He, J., & Min, H. (2005). A low-phase-noise 1-GHz LC VCO differentially tuned by switched step capacitors. IEEE Asian Solide-State Circuits Conference (pp. 409–412). Taiwan: Hsinchu.Google Scholar
  11. 11.
    Mizuno, M., Yamashina, M., Furuta, K., Igura, H., Abiko, H., Okabe, K., et al. (1996). A GHz MOS adaptive pipeline technique using MOS current-mode logic. IEEE Journal of Solid-State Circuits, 31(6), 784–791.CrossRefGoogle Scholar
  12. 12.
    Piazza, F., & Huang, Q. (1997). A low power CMOS dual modulus prescaler for high-speed frequency synthesizer. IEICE Transactions on Electronics, E80-C(2), 314–319.Google Scholar
  13. 13.
    Yuan, J., & Svensson, C. (1989). High-speed CMOS circuit technique. IEEE Journal of Solid-State Circuits, 24(1), 62–70.CrossRefGoogle Scholar
  14. 14.
    Worapishet, A. (2006). Extended phase noise performance in mutual negative resistance CMOS LC oscillator for low supply voltages. IEICE Transactions on Electronics, E89-C(6), 732–738.CrossRefGoogle Scholar
  15. 15.
    Herzel, F., Fischer, G., Gustat, H., & Weger, P. (2002). An integrated CMOS PLL for low-jitter applications. IEEE Transactions on Circuits and Systems, 49, 427–429.CrossRefGoogle Scholar
  16. 16.
    Craninckx, J., & Steyaert, M. (1998). A fully integrated CMOS DCS-1800 frequency synthesizer. IEEE Journal of Solid-State Circuits, 33, 2054–2065.CrossRefzbMATHGoogle Scholar
  17. 17.
    Ding, Y., & Kenneth, K. O. (2007). A 21-GHz 8-modulus prescaler and a 20-GHz phase-locked loop fabricated in 130-nm CMOS. IEEE Journal of Solid-State Circuits, 42(6), 1240–1249.CrossRefGoogle Scholar
  18. 18.
    Kang, K., & Lin, F. (2010). A 20-GHz integer-N frequency synthesizer for 60-GHz transceivers in 90 nm CMOS. In Proceedings of the IEEE-ICUWB, Nanjing, China (pp. 1–4).Google Scholar
  19. 19.
    Cao, C., & Kenneth, K. O. (2005). A power efficient 26-GHz 32: 1 static frequency divider in 130-nm bulk CMOS. IEEE Microwave and Wireless Components Letters, 15(11), 721–723.CrossRefGoogle Scholar
  20. 20.
    Adem, A., & Mohammed, I. (2004). CMOS PLLs and VCOs for 4G wireless. Dordrecht: Kluwer Academic Publishers.Google Scholar
  21. 21.
    Leeson, D. B. (1966). A simple model of feedback oscillator noise spectrum. Proceedings of IEEE, 54(2), 329–330.CrossRefGoogle Scholar
  22. 22.
    Razavi, B. (1996). Monolithic phase-locked loops and clock recovery. Piscataway, NJ: IEEE Press.CrossRefGoogle Scholar
  23. 23.
    Rylyakov, A., Tierno, J., Ainspan, H., Plouchart, J.O., Bulzacchelli, J., & Deniz, Z.T., et al. (2009). Bang-bang digital PLLs at 11 and 20 GHz with sub-200 fs integrated jitter for high-speed serial communication applications. In IEEE ISSCC digest of technical papers, San Francisco, CA (pp. 94–95).Google Scholar
  24. 24.
    Kim, J., Kim, J. K., Lee, B. J., Kim, N., Jeong, D. K., & Kim, W. (2006). A 20-GHz phase-locked loop for 40-Gb/s Serializing Transmitter in 0.13-μn CMOS. IEEE Journal of Solid-State Circuits, 41, 899–908.CrossRefGoogle Scholar
  25. 25.
    Floyd, B. (2008). A 16–18 GHz sub-integer-N frequency synthesizer for 60-GHz transceivers. IEEE Journal of Solid-State Circuits, 43(5), 1076–1086.CrossRefGoogle Scholar
  26. 26.
    Weng, J. H., Cheng, S., Chiu, C. K., & Chang, C. H. (2016). Ka-band frequency synthesizer involving a varactorless LC-type voltage-controlled oscillator and phase rotation. Microelectronics Journal, 49, 19–28.CrossRefGoogle Scholar
  27. 27.
    Chen, Y., & Mouthaan, K. (2010). Wideband varactorless LC VCO using a tunable negative-inductance cell. IEEE Transactions on Circuits and Systems I: Regular Paper, 57(10), 2609–2617.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yang, C. Y., & Tsai, M. T. (2007). A voltage-controlled varactorless LC-tank oscillator with a transformer-feedback technique. Microwave and Optical Technology Letters, 49(11), 2808–2810.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringTunghai UniversityTaichungTaiwan, ROC

Personalised recommendations