W-Band power amplifier with high output power and power-added efficiency in 90 nm CMOS

  • Yo-Sheng LinEmail author
  • Kai-Siang Lan


This paper reports a three-stage four-way power amplifier for 94 GHz image radar systems in 90 nm CMOS technology. The PA comprises a common-source (CS) input stage and a CS gain stage with wideband π-match input, inter-stage and output networks, followed by a four-way CS output stage using miniature dual-Y divider and combiner. Inductive shunt–shunt feedback technique is used at both the input and gain stages to enhance gain, which in turn leads to a higher output power (Pout) and power-added efficiency (PAE). At each branch’s input terminal (i.e. the drain terminal of the parallel CS output stage), the dual-Y current combiner can convert the serial RL load to the optimal load impedance (corresponds to the optimal Pout and PAE) of the output stage transistors. At 94 GHz, the PA achieves power gain of 16.5 dB, Pout of 16.5 dBm, and PAE of 18.3%, one of the best results ever reported for a W-band PA in 90 nm CMOS. The excellent performance of the CMOS PA indicates that it is suitable for 94 GHz image radar transceivers.


CMOS Power amplifier Output power Power added efficiency Four way Dual-Y current combiner Image radar 



This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under Contract MOST105-2221-E-260-025-MY3. The authors are very grateful for the support from Taiwan Semiconductor Research Institute (TSRI) for chip fabrication and measurements.


  1. 1.
    Son, H. S., Jang, T. H., Kim, S. H., Jung, K. P., Kim, J. H. & Park, C. S. (2019). Pole-controlled wideband 120 GHz CMOS power amplifier for wireless chip-to-chip communication in 40-nm CMOS process. In IEEE transactions on circuits and systems II: Express briefs.
  2. 2.
    Lin, Y. S., & Lin, H. M. (2015). A 60 GHz power amplifier with Psat of 13.1 dBm, PAE of 11% and excellent matching in 90 nm CMOS for 60 GHz short-range communication systems. Analog Integrated Circuits and Signal Processing, 82(1), 229–239.CrossRefGoogle Scholar
  3. 3.
    Chou, M. L. & Chiu, H. C. (2017). The design of wideband transformer-coupled 90-nm CMOS power amplifier for V-band application. In International workshop on electromagnetic: Applications and student innovation competition (pp. 162–163).Google Scholar
  4. 4.
    Lv, W., Duan, Z., Wu, S., & Wang, Y. (2018). A 68–79 GHz 15.6 dBm power amplifier in 65 nm CMOS. In Asia-Pacific microwave conference (APMC) (pp. 1522–1524).Google Scholar
  5. 5.
    Weng, S. M., Lee, Y. C., Chen, T. H., & Liu, J. Y. C. (2018). A 60-GHz adaptively biased power amplifier with predistortion linearizer in 90-nm CMOS. In IEEE/MTT-S international microwave symposium (pp. 651-654).Google Scholar
  6. 6.
    Wu, C. W., Lin, Y. H., Hsiao, Y. H., Chou, C. F., Wu, Y. C., & Wang, H. (2018). Design of a 60-GHz high-output power stacked-fet power amplifier using transformer-based voltage-type power combining in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 66(10), 4595–4607.CrossRefGoogle Scholar
  7. 7.
    Son, H. S., Lee, C. J., Kang, D. M., Jang, T. H., Lee, H. S., Kim, S. H., Byeon, C. W., & Park, C. S. (2018). A D-band CMOS power amplifier for wireless chip-to-chip communications with 22.3 dB gain and 12.2 dBm P1 dB in 65-nm CMOS technology. In IEEE topical conference on rf/microwave power amplifiers for radio and wireless applications (PAWR) (pp. 35–38).Google Scholar
  8. 8.
    Simic, D., & Reynaert, P. (2018). A 14.8 dBm 20.3 dB power amplifier for d-band applications in 40 nm CMOS. In IEEE radio frequency integrated circuits symposium (RFIC) (pp. 232–235).Google Scholar
  9. 9.
    Chen, J. C., Chang, T. Y., & Chiang, Y. C. (2017) A V-band power amplifier using marchand balun for power combining in 90n-nm CMOS process. In IEEE wireless power transfer conference (WPTC) (pp. 1–3).Google Scholar
  10. 10.
    Chen, S., Wang, G., Cheng, Z., Qin, P., & Xue, Q. (2017). Adaptively biased 60-GHz doherty power amplifier in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 27(3), 296–298.CrossRefGoogle Scholar
  11. 11.
    Tsai, J. H., Chang, R. A., & Lin, J. Y. (2014) A 69-81 GHz power amplifier using 90 nm CMOS technology. IEEE Topical Meeting on Silicon Monolithic Integrated Cirsuits in Rf Systems (SiRF) (pp. 77–79).Google Scholar
  12. 12.
    Wu, K. L., Lai, K. T., Hu, R., Jou, C. F., Niu, D. C., & Shiao, Y. S. (2014). 77–110 GHz 65-nm CMOS power amplifier design. IEEE Transactions on Terahertz Science and Technology, 4(3), 391–399.CrossRefGoogle Scholar
  13. 13.
    Lin, Y. S., & Nguyen, V. K. (2017). 94 GHz CMOS power amplifiers using miniature dual Y-shaped combiner with RL load. IEEE Transactions on Circuits and Systems-I: Regular Papers, 64(6), 1285–1298.CrossRefGoogle Scholar
  14. 14.
    Agah, A., Jayamon, J. A., Asbeck, P. M., Larson, L. E., & Buckwalter, J. F. (2014). Multi-drive stacked-FET power amplifiers at 90 GHz in 45 nm SOI CMOS. IEEE Journal of Solid-State Circuits, 49(5), 1148–1157.CrossRefGoogle Scholar
  15. 15.
    Hsiao, Y. H., Tsai, Z. M., Liao, H. C., Kao, J. C., & Wang, H. (2013). Millimeter-wave CMOS power amplifiers with high output power and wideband performance. IEEE Transactions on Microwave Theory and Technology, 61(12), 4520–4533.CrossRefGoogle Scholar
  16. 16.
    Chan, W. L., & Long, J. R. (2010). A 58–65 GHz neutralized CMOS power amplifier with PAE above 10% at 1-V supply. IEEE Journal of Solid-State Circuits (JSSC), 45(3), 554–564.CrossRefGoogle Scholar
  17. 17.
    Suzuki, T., Kawano, Y., Sato, M., Hirose, T. & Joshin, K. (2008). 60 and 77 GHz power amplifiers in standard 90 nm CMOS. In IEEE International Solid-State Circuits Conference (ISSCC) (pp. 562–563).Google Scholar
  18. 18.
    Hamada, Y., Tanomura, M., Ito, M., & Maruhashi, K. (2009). A high gain 77 GHz power amplifier operating at 0.7 V based on 90 nm CMOS technology. IEEE Microwave and Wireless Components Letters, 19(5), 329–331.CrossRefGoogle Scholar
  19. 19.
    Law, C. Y., & Pham, A. V. (2010). A High-gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS. In IEEE international solid-state circuits conference (ISSCC) (pp. 426–427).Google Scholar
  20. 20.
    Tai, W., Carley, L. R., & Ricketts, D. S. (2013). A 0.7 W fully integrated 42 GHz power amplifier with 10% PAE in 0.13 μm SiGe BiCMOS. In IEEE international solid-state circuits conference (ISSCC) (pp. 142–143).Google Scholar
  21. 21.
    Lin, Y. T., Chen, H. C., Wang, T., Lin, Y. S., & Lu, S. S. (2007). 3-10 GHz ultra- wideband low noise amplifiers utilizing miller effect and inductive shunt-shunt feedback technique. IEEE Transactions on Microwave Theory and Technologies, 55(9), 1832–1843.CrossRefGoogle Scholar
  22. 22.
    Pozar DM (1998) Microwave Engineering, Second Edition. Wiley, Hoboken (pp. 93-94 and 206-213).Google Scholar
  23. 23.
    Edwards, M. L., & Sinsky, J. H. (1992). A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Transactions on Microwave Theory and Techniques, 40(12), 2303–2311.CrossRefGoogle Scholar
  24. 24.
    Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques, 58(2), 287–296.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Chi Nan UniversityPuliTaiwan, ROC

Personalised recommendations