A design of ± 0.28 ppm temperature-compensated crystal oscillator in a 0.35 μm CMOS process

  • Ming Chen
  • YanJun Yang
  • Jie ChenEmail author


A high-performance temperature-compensated crystal oscillator (TCXO) is presented. This paper proposes a new temperature sensor with a Σ–Δ analog to digital converter, and a voltage-controlled crystal oscillator, respectively, using two sets of independent power supply. The presented TCXO is implemented in a 0.35 μm 2P3 M standard complementary metal-oxide semiconductor process at a power supply of 3.3 V, and the total power dissipation is 21 mW. Measurement results indicate that the designed TCXO achieves ± 16 ppm output frequency tuning range and 135, − 141 dBc/Hz phase noise at 1, 10 kHz frequency offset, respectively, by using a 40 MHz fundamental AT-cut crystal resonator. With the temperature compensation, the frequency deviation is within ± 0.28 ppm over − 40 °C to 85 °C.


Oscillator Crystal Temperature-compensated TCXO VCXO Varactor 



This work is sponsored by National Natural Program on Key Basic Research Project (973 Program) (No. 2015CB352103). The author would like to thank Dr. Jie Chen and Dr. Yang for their useful discussions and instruction.


  1. 1.
    van Diggelen, Frank. (2009). A-GPS: Assisted GPS, GNSS, and SBAS. Norwood: Artech House Publishers.Google Scholar
  2. 2.
    Rohde, U. L., Poddar, A. K., & Böck, G. (2005). The design of modern microwave oscillators for wireless applications: Theory and optimization. Hoboken: Wiley.CrossRefGoogle Scholar
  3. 3.
    Decarli, N., Guidi, F., Conti, A., & Dardari, D. (2012). Interference and clock drift effects in UWB RfiD systems using backscatter modulation. In Proceedings of the IEEE international conference on ultra-wideband (pp. 546–550)Google Scholar
  4. 4.
    Melamud, R., Kim, B., Chandorkar, S. A., Hopcroft, M. A., Agarwal, M., Jha, C. M., & Kenny, T. W. (2007). Temperature compensated high-stability silicon resonators. Applied Physics Letters, 90(24), 244107. Scholar
  5. 5.
    Achenbach, R., Feuerstack-Raible, M., Hiller, F., et al. (2000). A digitally temperature-compensated crystal oscillator. IEEE Journal of Solid-State Circuits, 35, 1502–1506.CrossRefGoogle Scholar
  6. 6.
    Lin, J. (2005). A low-phase-noise 0.004-ppm/step DCXO with guaranteed monotonicity in the 90-nm CMOS process. IEEE Journal of Solid-State Circuits, 40, 2726–2734.CrossRefGoogle Scholar
  7. 7.
    Makoto, W., Umeki, M., & Okazaki, M. (2006). High performance VCXO with 622.08 MHz fundamental quartz crystal resonator. In International frequency control symposium and exposition, 2006 IEEE.Google Scholar
  8. 8.
    Farahvash, S., Quek, C., & Mak, M. (2008). A temperature-compensated digitally-controlled crystal pierce oscillator for wireless applications. In IEEE international digest of technical papers on solid-state circuits conference 2008, ISSCC 2008, 19.7.Google Scholar
  9. 9.
    Razavi, B. (2002). Design of analog CMOS integrated circuits. New York: McGraw-Hill Education.Google Scholar
  10. 10.
    Niknejad, A. EE242 lecture notes, U.C. Berkeley, Spring 2007.Google Scholar
  11. 11.
    Aebischer, D., Oguey, H., & von Kaenel, V. (1997). A 2.1 MHz crystal oscillator time base with a current consumption under 500 nA. IEEE Journal of Solid-State Circuits, 32(7), 999–1005.CrossRefGoogle Scholar
  12. 12.
    Andreani, P., & Mattisson, S. (2000). On the use of MOS varactors in RF VCOs. IEEE Journal of Solid-State Circuits, 35(6), 905–910.CrossRefGoogle Scholar
  13. 13.
    Jin, J., Yu, X., Liu, X., Lim, W. M., & Zhou, J. (2014). A wideband voltage-controlled oscillator with gain linearized varactor bank. IEEE Transactions on Components, Packaging and Manufacturing Technology, 4(5), 905–910.CrossRefGoogle Scholar
  14. 14.
    Sansen, W. M. C. (2006). Analog design essentials, chapter 6. Berlin: Springer.Google Scholar
  15. 15.
    De La Cruz-Blas, C. A., López-Martín, A., & Carlosena, A. (2003). 1.5-V MOS translinear loops with improved dynamic range and their applications to current-mode signal processing. IEEE Transactions on Circuits Systems II: Express Brief, 50, 12.CrossRefGoogle Scholar
  16. 16.
    Vittoz, E. (2010). Low-power crystal and MEMS oscillators: The experience of watch developments. Berlin: Springer.CrossRefGoogle Scholar
  17. 17.
    Kao, S.-H., Tsao, M.-F., Chiang, C.-W., & Chao, M.-C. In 2014 symposium on piezoelectricity, acoustic waves, and device applications, Beijing, China.Google Scholar
  18. 18.
    Zaliasl, S., Salvia, J. C., Hill, G. C., et al. (2015). A 3 ppm 1.5 × 0.8 mm2 1.0 µA 32.768 kHz MEMS-based oscillator. IEEE Journal of Solid-State Circuits, 35(6), 905–910.Google Scholar
  19. 19.
    Tran, T.-H., Peng, H.-W., Chao, P. C.-P., & Hsieh, J.-W. (2017). A low-ppm digitally controlled crystal oscillator compensated by a new 0.19-mm2 time-domain temperature sensor. IEEE Sensors Journal, 17(1), 51–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MicroelectronicsChinese Academy of SciencesBeijingChina
  2. 2.ZunYi Normal UniversityZunyiChina

Personalised recommendations