A fast converging integrated implementation of zero-knowledge beamforming algorithm for phased-array receivers

  • Ali Ahmadikia
  • Seyed Mojtaba AtarodiEmail author


This paper presents a new implementation of adaptive beamforming algorithm that can be fully implemented on chip. It does not require the knowledge of the incoming signal direction or phase shifter characteristics. Besides, it eliminates the need for the ADC to convert the analog output signal to digital values for the microprocessor and the DAC to apply the calculated values to the control voltages of the analog phase shifters. Thus, it exhibits better convergence speed. In addition, the need for the complex and power-hungry processor is eliminated. Therefore, this implementation consumes less power. Analytical equations and constraints on system design parameters are derived, and the circuit implementation of the proposed method for adaptive beamforming algorithm is presented.


Adaptive beamforming Zero-knowledge algorithm Phase shifter Phased array systems RF phase-shifting architecture 



  1. 1.
    Garg, R., & Natarajan, A. S. (2017). A 28-GHz low-power phased-array receiver front-end with 360° RTPS phase shift range. IEEE Transactions on Microwave Theory and Techniques, 65(11), 4703–4714.CrossRefGoogle Scholar
  2. 2.
    Alok, S., Aikio, J. P., Shaheen, R. A., Akbar, R., Rahkonen, T., & Pärssinen, A. (2018). A four channel phased array transmitter using an active RF phase shifter for 5G wireless systems. Analog Integrated Circuits and Signal Processing, 98, 1–10.Google Scholar
  3. 3.
    Banbury, D.R., Fayyaz, N., Safavi-Naeini, S., Nikneshan, S. (2004). A CMOS 5.5/2.4 GHz dual-band smart-antenna transceiver with a novel RF dual-band phase shifter for WLAN 802.11a/b/g. In 2004 IEEE radio frequency integrated circuits (RFIC) systems. digest of papers (pp. 157–160).Google Scholar
  4. 4.
    Godara, L. C. (1997). Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.CrossRefGoogle Scholar
  5. 5.
    Carlson, B. D. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 397–401.CrossRefGoogle Scholar
  6. 6.
    Wahlberg, B. G., Mareels, I. M. Y., & Webster, I. (1991). Experimental and theoretical comparison of some algorithms for beamforming in single receiver adaptive arrays. IEEE Transactions on Antennas and Propagation, 39(1), 21–28.CrossRefGoogle Scholar
  7. 7.
    Qin, L., Wu, M., & Dong, Z. (2017). Robust adaptive beamforming using multi-snapshot direct data domain approach. AEU-International Journal of Electronics and Communications, 75, 124–129.CrossRefGoogle Scholar
  8. 8.
    Monzingo, R. A., Haupt, R. L., & Miller, T. W. (2011). Introduction to adaptive arrays. Raleigh: SciTech Publishing.CrossRefGoogle Scholar
  9. 9.
    Kawitkar, R.S., Wakde, D.G. (2005). Smart antenna array analysis using LMS algorithm. In IEEE international symposium on microwave, antenna, propagation and EMC technologies for wireless communications (pp. 370–374).Google Scholar
  10. 10.
    Godara, L., & Cantoni, A. (1986). Analysis of constrained LMS algorithm with application to adaptive beamforming using perturbation sequences. IEEE Transactions on Antennas and Propagation, 34(3), 368–379.CrossRefGoogle Scholar
  11. 11.
    Fakharzadeh, M., Jamali, S. H., Mousavi, P., & Safavi-Naeini, S. (2009). Fast beamforming for mobile satellite receiver phased arrays: Theory and experiment. IEEE Transactions on Antennas and Propagation, 57(6), 1645–1654.CrossRefGoogle Scholar
  12. 12.
    Wu, L., Li, A., & Luong, H. C. (2013). A 4-Path 42.8-to-49.5 GHz LO generation with automatic phase tuning for 60 GHz phased-array receivers. IEEE Journal of Solid-State Circuits, 48(10), 2309–2322.CrossRefGoogle Scholar
  13. 13.
    Fakharzadeh, M., Mousavi, P., Safavi-Naeini, S., & Jamali, S. H. (2008). The effects of imbalanced phase shifters loss on phased array gain. IEEE Antennas and Wireless Propagation Letters, 7, 192–196.CrossRefGoogle Scholar
  14. 14.
    Zhou, Y., & Chia, M. Y. (2008). A low-power ultra-wideband CMOS true RMS power detector. IEEE Transactions on Microwave Theory and Techniques, 56(5), 1052–1058.CrossRefGoogle Scholar
  15. 15.
    Sakphrom, S., Thanachayanont, A. (2012). A low-power CMOS RF power detector. In 2012 19th IEEE international conference on electronics, circuits, and systems (ICECS 2012) (pp. 177–180).Google Scholar
  16. 16.
    Lee, J., & Wang, H. (2009). Study of subharmonically injection-locked PLLs. IEEE Journal of Solid-State Circuits, 44(5), 1539–1553.CrossRefGoogle Scholar
  17. 17.
    Razavi, B., Lee, K. F., & Yan, R. H. (1995). Design of high-speed, low-power frequency dividers and phase-locked loops in deep submicron CMOS. IEEE Journal of Solid-State Circuits, 30(2), 101–109.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations