W-band low-noise amplifier using λ/2-spiral-inductor-based positive feedback technique in 90 nm CMOS

  • Yo-Sheng LinEmail author
  • Kai-Siang Lan


A low-power and wideband low-noise amplifier (LNA) for 77 GHz automobile radar and 94 GHz image radar systems using 90 nm CMOS technology is reported. Half-wavelength (λ/2)-spiral-inductor-based positive feedback technique is used at the common-source input stage for gain (S21) enhancement. Moreover, T-match technique is utilized to achieve simultaneously wideband input and output impedance matching, and wideband S21 and noise figure (NF). The LNA consumes 6.3 mW and achieves S11 and S22 better than − 10 dB for frequencies of 76.9–94.1 GHz and 77.2–96.7 GHz, respectively. That is, the corresponding input and output matching bandwidth are 17.2 GHz and 19.5 GHz, respectively. Additionally, high and flat S21 of 13.5 ± 1.5 dB is achieved for frequencies of 77–99.5 GHz, which means the corresponding 3-dB bandwidth is 22.5 GHz. Furthermore, the LNA achieves NF of 6.3–8.1 dB for frequencies of 75–100 GHz and excellent FOM (figure-of-merit) of 5.97 GHz/mW, one of the best results ever reported for a CMOS LNA with similar operation frequency.


Low-noise amplifier (LNA) W-band Millimeter-wave CMOS Wideband High gain Low power Positive feedback Automobile radar Image radar 



This work is supported by the Ministry of Science and Technology (MOST) of the R.O.C. under contracts MOST105-2221-E-260-025-MY3 and MOST106-2221-E-260-025-MY2. The authors are very grateful for the support from National Chip Implementation Center (CIC), Taiwan, for chip fabrication, and National Nano-Device Laboratory (NDL), Taiwan, for high-frequency measurements.


  1. 1.
    Lin, Y. S., Chen, C. C., & Lee, C. Y. (2016). 7.2 mW CMOS low-noise amplifier with 17.3 dB gain and 7.7 dB NF for 76–77 GHz long-range and 717 ~ 81 GHz short-range automotive radars. Analog Integrated Circuits and Signal Processing, 87(1), 1–9.CrossRefGoogle Scholar
  2. 2.
    Lee, C. J., Lee, H. J., Lee, J. G., Jang, T. H., & Park, C. S. (2015). A W-band CMOS low power wideband low noise amplifier with 22 dB gain and 3 dB bandwidth of 20 GHz. In Asia-Pacific microwave conference (APMC) (vol. 2, pp. 1–3).Google Scholar
  3. 3.
    Mustapha, A., & Shabra, A. (2017). A 60–90 GHz stagger-tuned low-noise amplifier with 1.2 dBm OP1 dB in 65 nm CMOS. In IEEE international conference on electronics, circuits and systems (ICECS) (pp. 26–29).Google Scholar
  4. 4.
    Feng, G., Boon, C. C., Meng, F., Yi, X., & Li, C. (2016). An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microwave and Wireless Components Letters, 26(2), 134–136.CrossRefGoogle Scholar
  5. 5.
    Yu, Y., Liu, H., Wu, Y., & Kang, K. (2017). A 54.4–90 GHz low-noise amplifier in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 52(11), 2892–2904.CrossRefGoogle Scholar
  6. 6.
    Vigilante, M., & Reynaert, P. (2016). A 68.1-to-96.4 GHz variable-gain low-noise amplifier in 28 nm CMOS. In IEEE international solid-state circuits conference (ISSCC) (pp. 360–361).Google Scholar
  7. 7.
    Lee, S. J., Baek, T. J., Han, M., Choi, S. G., Ko, D. S., & Rhee, J. K. (2012). 94 GHz MMIC single-balanced mixer for FMCW radar sensor application. In Proceedings of the global symposium on millimeter waves (pp. 351–354).Google Scholar
  8. 8.
    Kim, J., Kornegay, K. T., Alvarado, J., Jr., Lee, C. H., & Laskar, J. (2009). W-band double-balanced down-conversion mixer with Marchand baluns in silicon-germanium technology. Electronics Letters, 45(16), 841–843.CrossRefGoogle Scholar
  9. 9.
    Lin, Y. S., & Nguyen, V. K. (2017). 94 GHz CMOS power amplifiers using miniature dual Y-shaped combiner with RL load. IEEE Transactions on Circuits and Systems-I: Regular Papers, 64(6), 1285–1298.CrossRefGoogle Scholar
  10. 10.
    Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques, 58(2), 287–296.CrossRefGoogle Scholar
  11. 11.
    Liscidini, A., Brandolini, M., Sanzogni, D., & Castello, R. (2006). A 0.13 μm CMOS front-end, for DCS1800/UMTS/802.11b-g with multiband positive feedback low-noise amplifier. IEEE Journal of Solid-State Circuits, 41(4), 981–989.CrossRefGoogle Scholar
  12. 12.
    Chang, J. F., & Lin, Y. S. (2011). A 0.99 mW 3–10 GHz CG CMOS UWB LNA using T-match input network and self-body-bias technique. IET Electronics Letters, 47(11), 658–659.CrossRefGoogle Scholar
  13. 13.
    Lin, Y. S., Chang, J. F., Liang, H. B., Wang, T., & Lu, S. S. (2007). High-performance transmission-line inductors for 30–60 GHz RFIC applications. IEEE Transactions on Electron Devices, 54(9), 2512–2519.CrossRefGoogle Scholar
  14. 14.
    Edwards, M. L., & Sinsky, J. H. (1992). A new criterion for linear 2-port stability using a single geometrically derived parameter. IEEE Transactions on Microwave Theory and Techniques, 40(12), 2303–2311.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Chi Nan UniversityPuliTaiwan, ROC

Personalised recommendations