A PVT compensated nano-ampere current reference in 0.18 µm CMOS
- 15 Downloads
Abstract
A PVT compensated sub-µA current reference is proposed in this paper. It is based on the summation of a proportional to absolute temperature (PTAT) current with a complementary to absolute temperature current. The current generators are realized using the subthreshold beta multipliers. The PTAT current generator of the proposed current reference behaves always as PTAT independent of transistor sizing. The process compensation technique is based on the concept of an inverse process dependency between \(\beta \left( { = \mu C_{OX} {W \mathord{\left/ {\vphantom {W L}} \right. \kern-0pt} L}} \right)\) and the threshold voltage \(V_{TH}\) of the MOS transistor at any process corner. A current reference of 100 nA is implemented in CMOS 0.18 µm technology and studied through simulation. The proposed circuit has a temperature coefficient of 335 ppm/°C in the temperature range of 0–100 °C. It provides a low process variation of ± 2.1% and a lower line sensitivity of 0.093%/V in the supply voltage range of 1.35–3 V. It achieves a better figure of merit of 5.487% compared to the current references reported in the literature.
Keywords
Nano-ampere current reference Temperature compensation Proportional to absolute temperature (PTAT) current generator Process compensation Line sensitivityReferences
- 1.Sanjay, R., Rajan, V. S., & Venkataramani, B. (2018). A low-power low-noise and high swing biopotential amplifier in 0.18 µm CMOS. Analog Integrated Circuits and Signal Processing, 96(3), 565–576.CrossRefGoogle Scholar
- 2.Yazicioglu, R. F., Merken, P., Puers, R., & Hoof, C. V. (2007). A 60 µW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-State Circuits, 42(5), 1100–1110.CrossRefGoogle Scholar
- 3.Lee, S. Y., & Cheng, C. J. (2009). Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Transactions on Biomedical Circuits and Systems, 3(1), 53–64.CrossRefGoogle Scholar
- 4.Dong, Q., Lee, I., Yang, K., Blaauw, D., & Sylvester, D. (2017). A 1.02 nW PMOS-only, trim-free current reference with 282 ppm/°C from −40 °C to 120 °C and 1.6% within-wafer inaccuracy. In Proceedings of IEEE ESSCIRC (pp. 19–22).Google Scholar
- 5.Cordova, D., de Oliveira, A. C., Toledo, P., Klimach, H., Bampi, S., & Fabris, E. (2017). A sub-1 V, nanopower, ZTC based zero-VT temperature-compensated current reference. In Proceedings of IEEE international symposium on circuits and systems.Google Scholar
- 6.Oguey, H. J., & Aebischer, D. (1997). CMOS current reference without resistance. IEEE Journal of Solid-State Circuits, 32(7), 1132–1135.CrossRefGoogle Scholar
- 7.Chouhan, S. C., & Halonen, K. (2016). A 0.67-μW 177-ppm/°C all-MOS current reference circuit in a 0.18-μm CMOS technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(8), 723–727.CrossRefGoogle Scholar
- 8.Ueno, K., Hirose, T., Asai, T., & Amemiya, Y. (2010). A 1-μW 600-ppm/°C current reference circuit consisting of subthreshold CMOS circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(9), 681–685.CrossRefGoogle Scholar
- 9.Azcona, C., Calvo, B., Celma, S., Medrano, N., & Sanz, M. T. (2014). Precision CMOS current reference with process and temperature compensation. In Proceedings of IEEE international symposium on circuits and systems (pp. 910–913).Google Scholar
- 10.Hirose, T., Asai, T., & Amemiya, Y. (2008). Temperature-compensated CMOS current reference circuit for ultra low-power subthreshold LSIs. IEICE Electronics Express, 5(6), 204–210.CrossRefGoogle Scholar
- 11.Hirose, T, Osaki, Y., Kuroki, N., & Numa, M. (2010). A nano-ampere current reference circuit and its temperature dependence control by using temperature characteristics of carrier mobilities. In Proceedings of IEEE ESSCIRC (pp. 114–117).Google Scholar
- 12.Camacho-Galeano, E. M., Galup-Montoro, C., & Schneider, M. C. (2005). A 2-nW 1.1-V self-biased current reference in CMOS technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(2), 61–65.CrossRefGoogle Scholar
- 13.Serra-Graells, F., & Huertas, J. L. (2003). Sub-1-V CMOS proportional-to-absolute temperature references. IEEE Journal of Solid-State Circuits, 38(1), 84–88.CrossRefGoogle Scholar
- 14.Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of μ and Vth temperature effects with applications in CMOS circuits. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications., 48(7), 876–884.CrossRefGoogle Scholar
- 15.Wolpert, D., & Ampadu, P. (2012). Managing temperature effects in nanoscale adaptive systems, chapter 2 (1st ed., pp. 15–33). New York: Springer.CrossRefGoogle Scholar
- 16.Sengupta, S., Saurabh, K., & Allen, P. E. (2004). A process, voltage, and temperature compensated CMOS constant current reference. In Proceedings of IEEE international symposium circuits and systems (pp. 325–328).Google Scholar
- 17.Magnelli, L., Crupi, F., Corsonello, P., Pace, C., & Iannaccone, G. (2011). A 2.6 nW, 0.45 V temperature-compensated subthreshold CMOS voltage reference. IEEE Journal of Solid-State Circuits, 46(2), 465–474.CrossRefGoogle Scholar
- 18.Wang, D., Tan, X. L., & Chan, P. K. (2017). A 65-nm CMOS constant current source with reduced PVT variation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1373–1385.CrossRefGoogle Scholar