A W-band CMOS down-conversion mixer using CMOS-inverter-based RF GM stage for conversion gain and linearity enhancement

  • Yo-Sheng LinEmail author
  • Kai-Siang Lan


A W-band (75–110 GHz) down-conversion mixer with CMOS-inverter-based RF transconductance (GM) stage for 94 GHz image radar sensors in 90 nm CMOS is reported. Due to the current bleeding and GM contribution of the upper PMOS transistors of the RF GM stage, a larger load resistance can be adopted and a larger GM can be obtained while keeps the same linearity. This leads to a conversion gain (CG) enhancement. In addition, the second-order term GM (g2) and third-order term GM (g3) of the main NMOS transistors of the RF GM stage can be cancelled by those of the upper PMOS transistors and the auxiliary NMOS transistors of the RF GM stage. This leads to a better linearity. The mixer consumes 8.56 mW and achieves an excellent RF-port input reflection coefficient of − 10 to − 18 dB for frequencies of 88.4–103.4 GHz. In addition, for frequencies of 70–100 GHz, the mixer achieves CG of 13.9–17.5 dB and LO-RF isolation of 40.6–43.5 dB, one of the best CG and LO-RF isolation results ever reported for a down-conversion mixer with operation frequency around 94 GHz. Furthermore, the mixer achieves prominent NF of 16.4 dB and output third-order intercept point of 14.1 dBm at 94 GHz. These results demonstrate that the proposed down-conversion mixer architecture is very promising for 94 GHz image radar sensors.


CMOS 94 GHz Down-conversion mixer CMOS inverter RF GM stage Conversion gain LO-RF isolation Noise figure Linearity 



This work is supported by the Ministry of Science and Technology (MOST) of the ROC under contracts MOST105-2221-E-260-025-MY3 and MOST106-2221-E-260-025-MY2. The authors are very grateful for the support from National Chip Implementation Center (CIC), Taiwan, for chip fabrication, and National Nano-Device Laboratory (NDL), Taiwan, for high-frequency measurements.


  1. 1.
    Lee, C. J., & Park, C. S. (2016). A D-band gain-boosted current bleeding down-conversion mixer in 65 nm CMOS for chip-to-chip communication. IEEE Microwave and Wireless Components Letters, 26(2), 143–145.CrossRefGoogle Scholar
  2. 2.
    Lin, Y. S., & Li G. H. (2014). A W-band down-conversion mixer in 90 nm CMOS with excellent matching and port-to-port isolation for automotive radars. In International symposium on wireless communication systems (pp. 54–58).Google Scholar
  3. 3.
    Jang, J. G., Oh, J. T., & Hong, S. (2015). A 79 GHz gm-boosted sub-harmonic mixer with high conversion gain in 65 nm CMOS. In IEEE Radio Frequency Integrated Circuits (RFIC) (pp. 11–14).Google Scholar
  4. 4.
    Zhang, N., Xu, H., Wu, H. T., & Kenneth, K. O. (2009). W-band active down-conversion mixer in bulk CMOS. IEEE Microwave and Wireless Components Letters, 19(2), 98–100.CrossRefGoogle Scholar
  5. 5.
    Pan, D., Duan, Z., Huang, L., Wang, Y., Zhou, Y., Wu, B., et al. (2018). Design of high-linearity 75-90 GHz CMOS down-conversion mixer for automotive radar. Analog Integrated Circuits and Signals Processing, 97(2), 313–322.CrossRefGoogle Scholar
  6. 6.
    Lin, Y. S., Lan, K. S., Wang, C. C., & Li, G. H. (2017). Design and Implementation of a 94 GHz CMOS down-conversion mixer with integrated miniature planar baluns for image radar sensors. Analog Integrated Circuits and Signal Processing, 91(3), 353–365.CrossRefGoogle Scholar
  7. 7.
    Chou, M. L., Huang, F. H., & Chiu, H. C. (2013). A low LO power V-band Gilbert-cell down-conversion mixer using 90 nm CMOS technology. In Proceedings of international conference on computational problem-solving (ICCP) (pp. 184–186).Google Scholar
  8. 8.
    Shi, J., Li, L., & Cui, T. J. (2013). A 60-GHz broadband Gilbert-cell down conversion mixer in a 65-nm CMOS. In Proceedings of international conference on electron devices and solid-state circuits (pp. 1–2).Google Scholar
  9. 9.
    Tsai, J. H., Yang, H. Y., Huang, T. W., & Wang, H. (2008). A 30-100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology. IEEE Microwave and Wireless Components Letters, 18(8), 554–556.CrossRefGoogle Scholar
  10. 10.
    Ciocoveanu, C., Rimmelspacher, J., Weigel, R., Hagelauer, A., & Issakov, V. (2018). A 1.8-mW low power, PVT-resilient, high linearity, modified Gilbert-cell down-conversion mixer in 28-nm CMOS. In IEEE topical meeting on silicon monolithic integrated circuits in RF systems (SiRF) (pp. 19–22).Google Scholar
  11. 11.
    Kim, J., Kornegay, K. T., Alvarado, J., Jr., Lee, C. H., & Laskar, J. (2009). W-band double-balanced down-conversion mixer with Marchand baluns in silicon-germanium technology. Electronics Letters, 45(16), 841–843.CrossRefGoogle Scholar
  12. 12.
    Lee, S. J., Baek, T. J., Han, M., Choi, S. G., Ko, D. S., & Rhee, J. K. (2012). 94 GHz MMIC single-balanced mixer for FMCW radar sensor application. In Proceedings of global symposium on millimeter waves (pp. 351–354).Google Scholar
  13. 13.
    Lin, Y. S., Chen, C. Z., Yang, H. Y., Chen, C. C., Lee, J. H., Huang, G. W., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques, 58(2), 287–296.CrossRefGoogle Scholar
  14. 14.
    Lin, Y. S., & Nguyen, V. K. (2017). 94 GHz CMOS power amplifiers using miniature dual Y-shaped combiner with RL load. IEEE Transactions on Circuits and Systems-I: Regular Papers, 64(6), 1285–1298.CrossRefGoogle Scholar
  15. 15.
    Lin, Y. S., Lee, J. H., Huang, S. L., Wang, C. H., Wang, C. C., & Lu, S. S. (2012). Design and analysis of a 21 ~ 29 GHz ultra-wideband receiver front-end in 0.18 μm CMOS technology. IEEE Microwave Theory and Techniques, 60(8), 2590–2604.CrossRefGoogle Scholar
  16. 16.
    Aparin, V., & Larson, L. E. (2005). Modified derivative superposition method for linearizing FET low-noise amplifiers. IEEE Transactions on Microwave Theory and Techniques, 53(2), 571–581.CrossRefGoogle Scholar
  17. 17.
    Li, Y., Han, K., Yan, N., Xi, T., & Min, H. (2012). Analysis and implementation of derivative superposition for a power amplifier driver. Journal of Semiconductors, 33(4), 045002-1–045002-8.Google Scholar
  18. 18.
    Lin, Y. S., Liu, F. C., & Wen, W. C. (2014). Design and implementation of squared and octagonal W-band CMOS marchand baluns for W-band communication systems. Microwave and Optical Technology Letters, 56(10), 2205–2211.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Chi Nan UniversityPuliTaiwan, ROC

Personalised recommendations