Advertisement

Application of fractal dimension for EEG based diagnosis of encephalopathy

  • Jisu Elsa Jacob
  • Gopakumar Kuttappan Nair
  • Ajith Cherian
  • Thomas Iype
Article
  • 12 Downloads

Abstract

In this study, we have investigated whether fractal dimension is a useful non linear feature for distinguishing electroencephalogram (EEG) of cases with encephalopathy from that of normal healthy EEGs. Both Higuchi’s fractal dimension and Katz’s fractal dimension were computed and were statistically analyzed between the normal and disease groups. Both parameters showed significant difference between the normal and encephalopathy groups, though Higuchi’s fractal dimension showed better discriminating ability. Support Vector Machine (SVM) classifier was also applied for the automated diagnosis of encephalopathy based on EEG. It has been found that SVM classifier performed better when Higuchi’s fractal dimension was utilized as feature set than using both Higuchi’s and Katz’s FD together.

Keywords

Fractal dimension Higuchi’s fractal dimension Katz’s fractal dimension Electroencephalogram Encephalopathy Support vector machine 

References

  1. 1.
    Faigle, R., Sutter, R., & Kaplan, P. W. (2013). The electroencephalography of encephalopathy in patients with endocrine and metabolic disorders. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 30(5), 505–516.CrossRefGoogle Scholar
  2. 2.
    Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277–283.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Katz, M. J. (1988). Fractals and the analysis of waveforms. Computers in Biology and Medicine, 18(3), 145–156.CrossRefGoogle Scholar
  4. 4.
    Arle, J. E., & Simon, R. H. (1990). An application of fractal dimension to the detection of transients in the electroencephalogram. Electroencephalography and Clinical Neurophysiology, 75(4), 296–305.CrossRefGoogle Scholar
  5. 5.
    Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77(5), 339–350.CrossRefzbMATHGoogle Scholar
  6. 6.
    Esteller, R., Vachtsevanos, G., Echauz, J., Henry, T., Pennell, P., Epstein, C., et al. (1999). Fractal dimension characterizes seizure onset in epileptic patients. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. 2343–2346). IEEE.Google Scholar
  7. 7.
    Ahmadlou, M., Adeli, H., & Adeli, A. (2010). Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. Journal of Clinical Neurophysiology, 27(5), 328–333.CrossRefGoogle Scholar
  8. 8.
    Gómez, C., Mediavilla, Á., Hornero, R., Abásolo, D., & Fernández, A. (2009). Use of the Higuchi’s fractal dimension for the analysis of MEG recordings from Alzheimer’s disease patients. Medical Engineering & Physics, 31(3), 306–313.CrossRefGoogle Scholar
  9. 9.
    Kesić, S., & Spasić, S. Z. (2016). Application of Higuchi’s fractal dimension from basic to clinical neurophysiology: A review. Computer Methods and Programs in Biomedicine, 133, 55–70.CrossRefGoogle Scholar
  10. 10.
    Carrozzi, M., Accardo, A., & Bouquet, F. (2004). Analysis of sleep-stage characteristics in full-term newborns by means of spectral and fractal parameters. Sleep, 27(7), 1384–1393.CrossRefGoogle Scholar
  11. 11.
    Šušmáková, K., & Krakovská, A. (2008). Discrimination ability of individual measures used in sleep stages classification. Artificial Intelligence in Medicine, 44(3), 261–277.CrossRefGoogle Scholar
  12. 12.
    Georgiev, S., Minchev, Z., Christova, C., & Philipova, D. (2009). EEG fractal dimension measurement before and after human auditory stimulation. Bioautomation, 12, 70–81.Google Scholar
  13. 13.
    Klonowski, W., Olejarczyk, E., Stepien, R., Jalowiecki, P., & Rudner, R. (2006). Monitoring the depth of anaesthesia using fractal complexity method. In Complexus mundi: emergent patterns in nature (pp. 333-342).Google Scholar
  14. 14.
    Gifani, P., Rabiee, H., Hashemi, M., Taslimi, P., & Ghanbari, M. (2007). Optimal fractal-scaling analysis of human EEG dynamic for depth of anesthesia quantification. Journal of the Franklin Institute, 344(3), 212–229.CrossRefzbMATHGoogle Scholar
  15. 15.
    Ferenets, R., Lipping, T., Suominen, P., Turunen, J., Puumala, P., Jantti, V., et al. (2006). Comparison of the properties of EEG spindles in sleep and propofol anesthesia. In 28th annual international conference of the IEEE engineering in medicine and biology society, EMBS’06 (pp. 6356–6359). IEEE.Google Scholar
  16. 16.
    Liu, Y., Sourina, O., & Nguyen, M. K. (2010). Real-time EEG-based human emotion recognition and visualization. In International conference on cyberworlds (CW) (pp. 262–269). IEEE.Google Scholar
  17. 17.
    Ahmadlou, M., Adeli, H., & Adeli, A. (2012). Fractality analysis of frontal brain in major depressive disorder. International Journal of Psychophysiology, 85(2), 206–211.CrossRefGoogle Scholar
  18. 18.
    Raghavendra, B., Dutt, D. N., Halahalli, H. N., & John, J. P. (2009). Complexity analysis of EEG in patients with schizophrenia using fractal dimension. Physiological Measurement, 30(8), 795.CrossRefGoogle Scholar
  19. 19.
    Sabeti, M., Katebi, S., & Boostani, R. (2009). Entropy and complexity measures for EEG signal classification of schizophrenic and control participants. Artificial Intelligence in Medicine, 47(3), 263–274.CrossRefGoogle Scholar
  20. 20.
    Boostani, R., Sadatnezhad, K., & Sabeti, M. (2009). An efficient classifier to diagnose of schizophrenia based on the EEG signals. Expert Systems with Applications, 36(3), 6492–6499.CrossRefGoogle Scholar
  21. 21.
    Wornell, G., & Oppenheim, A. V. (1996). Signal processing with fractals: A wavelet-based approach. Upper Saddle River: Prentice Hall Press.Google Scholar
  22. 22.
    Sharma, M., Pachori, R. B., & Acharya, U. R. (2017). A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognition Letters, 94, 172–179.CrossRefGoogle Scholar
  23. 23.
    Yeragani, V. K., Sobolewski, E., Jampala, V., Jerald, K., Yeragani, S., & Gina, I. (1998). Fractal dimension and approximate entropy of heart period and heart rate: Awake versus sleep differences and methodological issues. Clinical Science, 95(3), 295–301.CrossRefGoogle Scholar
  24. 24.
    Pradhan, N., & Dutt, D. N. (1993). Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Computers in Biology and Medicine, 23(5), 381–388.CrossRefGoogle Scholar
  25. 25.
    Acharya, R., Bhat, P. S., Kannathal, N., Rao, A., & Lim, C. M. (2005). Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM, 26(2), 133–139.CrossRefGoogle Scholar
  26. 26.
    Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). Use of the fractal dimension for the analysis of electroencephalographic time series. Biological Cybernetics, 77(5), 339–350.CrossRefzbMATHGoogle Scholar
  27. 27.
    Peiris, M., Jones, R., Davidson, P., Bones, P., & Myall, D. (2005) Fractal dimension of the EEG for detection of behavioural microsleeps. In 27th annual international conference of the engineering in medicine and biology society, IEEE-EMBS (pp. 5742–5745). IEEE.Google Scholar
  28. 28.
    Dash, D. P., & Kolekar, M. H. (2007). Epileptic seizure detection based on EEG signal analysis using hierarchy based Hidden Markov Model. In International conference on advances in computing, communications and informatics (ICACCI) (pp. 1114–1120). IEEE.Google Scholar
  29. 29.
    Mårtensson, H., Keelan, O., & Ahlström, C. (2018). Driver sleepiness classification based on physiological data and driving performance from real road driving. IEEE Transactions on Intelligent Transportation Systems, 99, 1–10.CrossRefGoogle Scholar
  30. 30.
    Selesnick, I. W., Graber, H. L., Pfeil, D. S., & Barbour, R. L. (2014). Simultaneous low-pass filtering and total variation denoising. IEEE Transactions on Signal Processing, 62(5), 1109–1124.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., & Elger, C. E. (2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64(6), 061907.CrossRefGoogle Scholar
  32. 32.
    Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., & Farmer, J. D. (1992). Testing for nonlinearity in time series: The method of surrogate data. Physica D: Nonlinear Phenomena, 58(1–4), 77–94.CrossRefzbMATHGoogle Scholar
  33. 33.
    Jelles, B., Van Birgelen, J., Slaets, J., Hekster, R., Jonkman, E., & Stam, C. (1999). Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clinical Neurophysiology, 110(7), 1159–1167.CrossRefGoogle Scholar
  34. 34.
    Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology, 116(10), 2266–2301.CrossRefGoogle Scholar
  35. 35.
    Natarajan, K., Acharya, R., Alias, F., Tiboleng, T., & Puthusserypady, S. K. (2004). Nonlinear analysis of EEG signals at different mental states. BioMedical Engineering OnLine, 3(1), 7.CrossRefGoogle Scholar
  36. 36.
    Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., Rossini, P. M., & Tecchio, F. (2016). Electroencephalographic fractal dimension in healthy ageing and Alzheimer’s disease. PLoS ONE, 11(2), e0149587.CrossRefGoogle Scholar
  37. 37.
    Jacob, J. E., Cherian, A., Gopakumar, K., Iype, T., Yohannan, D. G., & Divya, K. P. (2018). Can chaotic analysis of electroencephalogram aid the diagnosis of encephalopathy? Neurology Research International, 2018, 8192820.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSCT College of EngineeringThiruvananthapuramIndia
  2. 2.Department of ECETKM College of EngineeringKollamIndia
  3. 3.Department of NeurologySCTIMSTThiruvananthapuramIndia
  4. 4.Department of NeurologyGovernment Medical CollegeThiruvananthapuramIndia

Personalised recommendations