Advertisement

A low phase noise quadrature VCO using superharmonic injection, current reuse, and negative resistance techniques in CMOS technology

  • Mahdiar Azizi Poor
  • Omid Esmaeeli
  • Samad SheikhaeiEmail author
Article
  • 36 Downloads

Abstract

In this article, a low phase noise quadrature VCO (QVCO) is proposed, which uses superharmonic injection and current reuse techniques to reduce phase-noise and power consumption. The LC tank circuit quality factor is improved, using a negative resistance. PMOS transistors have also been used instead of NMOS transistors. As a result of these modifications, further phase noise reduction is achieved. The QVCO consists of a VCO operating at 2ω0 (twice the operating frequency) injecting its output signal into the common source nodes of two other oscillators operating at ω0. Using this superharmonic injection technique, in addition to phase noise reduction, the chance of injection pulling caused by powerful PA signals is reduced. Also, the current reuse technique automatically adapts its voltage to the requirement of the supplied stages, therefore, it is not limiting the VCO output swing. Designed for the 900 MHz band and simulated in a 0.18 µm CMOS technology with 1.8 V power supply, the circuit achieves a phase noise of − 141.5 dBc/Hz at 1 MHz offset frequency, while consuming 12.8 mW power. The proposed circuit is compared with several re-simulated previously published work. The comparison shows 17.5 dB reduction in phase noise compared to conventional P-QVCO, while consuming the same amount of power.

Keywords

Quadrature VCO (QVCO) Superharmonic injection Current reuse Negative resistance Low phase noise 

References

  1. 1.
    Razavi, B. (2011). RF microelectronics (2nd ed.). Englewood Cliffs: Prentice Hall.Google Scholar
  2. 2.
    Jang, S. L., Chuang, Y. H., Lee, C. K., & Lee, S. H. (2006). A 4.8 GHz low-phase noise quadrature colpitts VCO. In International symposium on VLSI design, automation and test. (pp. 1–4).Google Scholar
  3. 3.
    Chang, H. Y., & Chiu, Y. T. (2012). K-Band CMOS differential and quadrature voltage-controlled oscillator for low phase-noise and low-power applications. IEEE Transactions on Microwave Theory and Techniques, 60(1), 46–59.CrossRefGoogle Scholar
  4. 4.
    Tiebout, M. (2001). Low-power low-phase-noise differentially tuned quadrature VCO design in standard CMOS. IEEE Journal of Solid-State Circuits, 36(7), 1018–1024.CrossRefGoogle Scholar
  5. 5.
    Andreani, P., Bonfanti, A., Romano, L., & Samori, C. (2002). Analysis and design of a 1.8-GHz CMOS LC quadrature VCO. IEEE Journal of Solid-State Circuits, 37(12), 1737–1747.CrossRefGoogle Scholar
  6. 6.
    Gierkink, S. L., Levantino, S., Frye, R. C., Samori, C., & Boccuzzi, V. (2003). A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling. IEEE Journal of Solid-State Circuits, 38(7), 1148–1154.CrossRefGoogle Scholar
  7. 7.
    Rategh, H. R., & Lee, T. H. (1999). Superharmonic injection-locked frequency dividers. IEEE Journal of Solid-State Circuits, 34(6), 813–821.CrossRefGoogle Scholar
  8. 8.
    Cabanillas, J., Dussopt, L., Lopez-Villegas, J. M., & Rebeiz, G. M. (2002). A 900 MHz low phase noise CMOS quadrature oscillator. In IEEE radio frequency integrated circuits (RFIC) symposium. (pp. 63–66).Google Scholar
  9. 9.
    Kim, J. K., Jeong, J., Ha, D. S., & Lee, H. (2011). A current-reuse quadrature VCO for wireless body area networks. In IEEE/NIH life science systems and applications workshop (LiSSA). (pp. 55–58).Google Scholar
  10. 10.
    Lin, C. H., & Chang, H. Y. (2012). A low-phase-noise CMOS quadrature voltage-controlled oscillator using a self-injection-coupled technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 59(10), 623–627.CrossRefGoogle Scholar
  11. 11.
    Hegazi, E., Sjoland, H., & Abidi, A. A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 36(12), 1921–1930.CrossRefGoogle Scholar
  12. 12.
    Ebrahimi, E., & Naseh, S. (2010). New capacitive coupled superharmonic quadrature LC-VCO. IEICE Electronics Express, 7(13), 956–963.CrossRefGoogle Scholar
  13. 13.
    Oh, N. J., & Lee, S. G. (2005). Current reused LC VCOs. IEEE Microwave and Wireless Components Letters, 15(11), 736–738.CrossRefGoogle Scholar
  14. 14.
    Lin, C. A., Kuo, J. L., Lin, K. Y., & Wang, H. (2009). A 24 GHz low power VCO with transformer feedback. In IEEE radio frequency integrated circuits (RFIC) symposium. (pp. 75–78).Google Scholar
  15. 15.
    Chang, H. J., Kim, K. W., Park, J. H., & Yun, T. Y. (2012). Dual-band low-phase-noise LC-QVCO using series coupling and switched biasing techniques. Springer Analog Integrated Circuits and Signal Processing, 73(3), 955–960.CrossRefGoogle Scholar
  16. 16.
    Huang, G., & Kim, B. S. (2009). Low phase noise self-switched biasing CMOS LC quadrature VCO. IEEE Transactions on Microwave Theory and Techniques, 57(2), 344–351.CrossRefGoogle Scholar
  17. 17.
    Cheng, K. W., & Allstot, D. J. (2009) A gate-modulated CMOS LC quadrature VCO. In IEEE radio frequency integrated circuits symposium. (pp 267–270).Google Scholar
  18. 18.
    Lu, C. T., Hsieh, H. H., & Lu, L. H. (2010). A low-power quadrature VCO and its application to a 0.6-V 2.4-GHz PLL. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(4), 793–802.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jalalifar, M., & Byun, G. S. (2014). Ultra-low-power quadrature VCO for 2.4 GHz-band IEEE 802.15.4 standard. Electronics Letters, 50(16), 1168–1169.CrossRefGoogle Scholar
  20. 20.
    Atarodi, M., Torkzadeh, P., & Behmanesh, B. (2011). A low power, low phase noise, square wave LC quadrature VCO and its comprehensive analysis for ISM band. Elsevier International Journal of Electronics and Communications, 65(5), 458–467.CrossRefGoogle Scholar
  21. 21.
    Lee, K. K., Bryant, C., Törmänen, M., & Sjöland, H. (2011). Design and analysis of an ultra-low-power LC quadrature VCO. Springer Analog Integrated Circuits and Signal Processing, 67(1), 49–60.CrossRefGoogle Scholar
  22. 22.
    Shieh Ali Saleh, S., & Masoumi, N. (2012). Wide-tuning-range, low-phase-noise quadrature ring oscillator exploiting a novel noise canceling technique. Elsevier International Journal of Electronics and Communications, 66(5), 372–379.CrossRefGoogle Scholar
  23. 23.
    Razavi, B. (2004). A study of injection locking and pulling in oscillators. IEEE Journal of Solid-State Circuits, 39(9), 1415–1424.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Advancom Lab, School of Electrical and Computer EngineeringCollege of Engineering, University of TehranTehranIran

Personalised recommendations