Advertisement

Functionality of circuit via modern fractional differentiations

  • Kashif Ali AbroEmail author
  • Ali Asghar Memon
  • Anwar Ahmed Memon
Article
  • 91 Downloads

Abstract

The significance of the modern fractional derivatives containing the singular kernel with locality and the non-singular kernel with non-locality have recently diverted the researchers because of the numerical or experimental analyses on the behavior between a system conservative and dissipative and the lack of fractionalized analytic methods. This study investigates the effects of modern fractional differentiation on the RLC electrical circuit via exact analytical approach. The modeling of governing differential equation of RLC electrical circuit has been fractionalized through three types of fractional derivatives namely Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives based on the range as \(0 \le \alpha \le 1,\,\,0 \le \beta \le 1,\,\,0 \le \gamma \le 1\) respectively. The RLC electrical circuit is observed for exponential, periodic and unit step sources via three classified modern fractional derivatives. The exact analytical solutions have been investigated by invoking mathematical Laplace transforms and presented in terms of convolutions product and special function namely Fox-H function. The Comparative mathematical analysis of RLC electrical circuit is based on Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives which exhibit the presence of heterogeneities in the electrical components causing irreversible dissipative effects. Finally, the several similarities and differences for the periodic and exponential sources have been rectified on the basis of the Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives for the current.

Keywords

RLC electrical circuit Modern fractional operators Special functions Laplace transform Graphical illustrations 

Notes

Acknowledgements

The authors are highly thankful and grateful to Mehran university of Engineering and Technology, Jamshoro, Pakistan for generous support and facilities of this research work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Tsirimokou, G., & Psychalinos, C. (2016). Ultra_ow voltage fractional-order circuits using current mirrors. International Journal of Circuit Theory and Applications, 44(1), 109–126.CrossRefGoogle Scholar
  2. 2.
    Soltan, A., Radwan, A. G., & Soliman, A. M. (2016). Fractional-order mutual inductance: analysis and design. International Journal of Circuit Theory and Applications, 44(1), 85–97.CrossRefGoogle Scholar
  3. 3.
    Cao, J., Syta, A., Litak, G., Zhou, S., Inman, D. J., & Chen, Y. (2015). Regular and chaotic vibration in a piezoelectric energy harvester with fractional damping. The European Physical Journal Plus, 130(6), 103.CrossRefGoogle Scholar
  4. 4.
    Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Fractional-order models of supercapacitors, batteries and fuel cells: A survey. Materials for Renewable and Sustainable Energy, 4(3), 1–7.CrossRefGoogle Scholar
  5. 5.
    Elwakil, A. S. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. Circuits and Systems Magazine, IEEE., 10(4), 40–50.CrossRefGoogle Scholar
  6. 6.
    Kumar, S. (2014). A new analytical modelling for fractional telegraph equation via Laplace transform. Applied Mathematical Modelling, 38(13), 3154–3163.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gómez Aguilar, J. F. (2016). Behavior characteristic of a cap-resistor, memcapacitor and a memristor from the response obtained of RC and RL electrical circuits described by fractional differential equations. Turkish Journal of Electrical Engineering & Computer Sciences, 24(3), 1421–1433.CrossRefGoogle Scholar
  8. 8.
    Podlubny, I. (1999). Fractional differential equations. San Diego, CA: Academic Press.zbMATHGoogle Scholar
  9. 9.
    Jamil, M., Abro, K. A., & Khan, N. A. (2015). Helices of fractionalized Maxwell fluid. Nonlinear Engineering, 4(4), 191–201.CrossRefGoogle Scholar
  10. 10.
    Abro, K. A., Kashif Ali Abro, Hussain, M., & Baig, M. M. (2016). Impacts of magnetic field on fractionalized viscoelastic fluid. Journal of Applied Environmental and Biological Sciences (JAEBS), 6(9), 84–93.Google Scholar
  11. 11.
    Laghari, M. H., Abro, K. A., & Shaikh, A. A. (2017). Helical flows of fractional viscoelastic fluid in a circular pipe. International Journal of Advanced and Applied Sciences, 4(10), 97–105.CrossRefGoogle Scholar
  12. 12.
    Abro, K. A., Hussain, M., & Baig, M. M. (2018). A mathematical analysis of magnetohydrodynamic generalized burger fluid for permeable oscillating plate, Punjab University. Journal of Mathematics, 50(2), 97–111.MathSciNetGoogle Scholar
  13. 13.
    Abro, K. A., Saeed, S. H., Mustapha, N., Khan, I., & Tassadiq, A. (2018). A mathematical study of magnetohydrodynamic casson fluid via special functions with heat and mass transfer embedded in porous plate. Malaysian Journal of Fundamental and Applied Sciences, 14(1), 20–38.Google Scholar
  14. 14.
    Shakeel, A., Ahmad, S., Khan, H., & Vieru, D. (2016). Solutions with Wright functions for time fractional convection flow near a heated vertical plate, Shakeel, et al. Advances in Difference Equations, 2016, 51.  https://doi.org/10.1186/s13662-016-0775-9.CrossRefzbMATHGoogle Scholar
  15. 15.
    Caputo, M., & Fabricio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1, 73–85.Google Scholar
  16. 16.
    Atangana, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model. Thermal Science, 20(2), 763–769.CrossRefGoogle Scholar
  17. 17.
    Hristov, J. (2017). Steady-state heat conduction in a medium with spatial non-singular fading memory: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Thermal Science, 21, 827–839.CrossRefGoogle Scholar
  18. 18.
    Atanganaa, A., & Kocab, I. (2016). On the new fractional derivative and application to nonlinear Baggs and Freedman model. Journal of Nonlinear Sciences and Applications, 9, 2467–2480.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Atangana, A., & Koca, I. (2016). Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons and Fractals, 1–8.Google Scholar
  20. 20.
    Al-Mdallal, Q., Abro, K. A., & Khan, I. (2018). Analytical solutions of fractional Walter’s-B fluid with applications. Complexity, Article ID 8918541.Google Scholar
  21. 21.
    Alkahtani, B. S. T., & Atangana, A. (2016). Controlling the wave movement on the surface of shallow water with the Caputo-Fabrizio derivative with fractional order. Chaos, Solitons & Fractals, 89, 539–546.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nadeem, A. S., Farhad, A., Muhammad, S., Ilyas, K., & Aftab, A. J. (2017). A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. The European Physical Journal Plus, 132, 54.  https://doi.org/10.1140/epjp/i2017-11326-y.CrossRefGoogle Scholar
  23. 23.
    Khan, A., Abro, K. A., Tassaddiq, A., & Khan, I. (2017). Atangana-Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: A comparative study. Entropy, 19(8), 1–12.CrossRefGoogle Scholar
  24. 24.
    Kashif, A. A., Anwar, A. M., & Muhammad, A. U. (2018). A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives. The European Physical Journal Plus, 133, 113.CrossRefGoogle Scholar
  25. 25.
    Sheikh, N. A., Ali, F., Khan, I., Gohar, M., & Saqib, M. (2017). On the applications of nanofluids to enhance the performance of solar collectors: A comparative analysis of Atangana-Baleanu and Caputo-Fabrizio fractional models. The European Physical Journal Plus, 132(12), 540.CrossRefGoogle Scholar
  26. 26.
    Hristov, J. (2017). Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models. Frontiers in Fractional Calculus. Sharjah: Bentham Science Publishers, pp. 235–295.Google Scholar
  27. 27.
    Atangana, A. (2016). On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Applied Mathematics and Computation, 273, 948–956.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Abro, K. A., Khan, I., & Tassadiq, A. (2018). Application of Atangana-Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Mathematical Modelling of Natural Phenomenon, 13, 1.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ali, F., Jan, S. A. A., Khan, I., Gohar, M., & Sheikh, N. A. (2016). Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. The European Physical Journal Plus, 131(9), 310.CrossRefGoogle Scholar
  30. 30.
    Abro, K. A., Ilyas, K., & Gomez-Aguilar, J. F. (2018). A mathematical analysis of a circular pipe in rate type fluid via Hankel transform. The European Physical Journal Plus, 133, 397.  https://doi.org/10.1140/epjp/i2018-12186-7.CrossRefGoogle Scholar
  31. 31.
    Abro, K. A., & Khan, I. (2017). Analysis of the heat and mass transfer in the MHD flow of a generalized Casson fluid in a porous space via non-integer order derivatives without a singular kernel. Chinese Journal of Physics, 55(4), 1583–1595.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Kashif, A. A., Irfan, A. A., Sikandar, M. A., & Ilyas, K. (2018). On the thermal analysis of magnetohydrodynamic Jeffery fluid via modern non-integer order derivative. Journal of King Saud University–Science.  https://doi.org/10.1016/j.jksus.2018.07.012.CrossRefGoogle Scholar
  33. 33.
    Kashif, A. A., & Muhammad, A. S. (2017). Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo-Fabrizoi fractional derivatives, Punjab University. Journal of Mathematics, 49(2), 113–125.MathSciNetzbMATHGoogle Scholar
  34. 34.
    Abro, K. A., Rashidi, M. M., Khan, I., Abro, I. A., & Tassadiq, A. (2018). Analysis of Stokes’ second problem for nanofluids using modern fractional derivatives. Journal of Nanofluids, 7, 738–747.CrossRefGoogle Scholar
  35. 35.
    Hammouch, Z., & Mekkaoui, T. (2015). Control of a new chaotic fractional-order system using Mittag-Leffler stability. Nonlinear Studies, 22, 565–577.MathSciNetzbMATHGoogle Scholar
  36. 36.
    Hammouch, Z., & Mekkaoui, T. (2014). Chaos synchronization of a fractional nonautonomous System. Nonautonomous Dynamical Systems, 1, 61–71.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Atangana, A., & Owolabi, K. M. New numerical approach for fractional differential equations, preprint, arXiv:1707.08177.
  38. 38.
    Baleanu, D., Caponetto, R., & Machado, J. T. (2016). Challenges in fractional dynamics and control theory. Journal of Vibration and Control, 22, 2151–2152.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. London: Imperial College Press.CrossRefGoogle Scholar
  40. 40.
    Laghari, M. H., Abro, K. A., & Shaikh, A. A. (2017). Helical flows of fractional viscoelastic fluid in a circular pipe. International Journal of Advanced and Applied Sciences, 4(10), 97–105.CrossRefGoogle Scholar
  41. 41.
    Abro, K. A., Hussain, M., & Baig, M. M. (2017). Slippage of fractionalized Oldroyd-B fluid with magnetic field in porous medium. Progress in Fractional Differentiation and Applications: An international Journal, 3(1), 69–80.CrossRefGoogle Scholar
  42. 42.
    Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73–85.Google Scholar
  43. 43.
    Abdon, A., & Baleanu, D. (2016). New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Thermal Science.  https://doi.org/10.2298/tsci160111018a.CrossRefGoogle Scholar
  44. 44.
    Abro, K. A., Khan, I., & Tassadiqq, A. (2018). Application of Atangana-Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Mathematical Modelling of Natural Phenomena, 13, 1.  https://doi.org/10.1051/mmnp/2018007.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences and Related StudiesMehran University of Engineering and TechnologyJamshoroPakistan
  2. 2.Department of Electrical EngineeringMehran University of Engineering and TechnologyJamshoroPakistan

Personalised recommendations