Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 1, pp 209–219 | Cite as

1.3 V supply voltage, high bandwidth, 100 nA minimum amplitude BiCMOS voltage-controlled current source

  • Nikša TadićEmail author
  • Alija Dervić
  • Milena Erceg
  • Bernhard Goll
  • Horst Zimmermann
Mixed Signal Letter
  • 50 Downloads

Abstract

A voltage-controlled current source in 0.35 μm BiCMOS technology is presented. A linear relationship between the control voltage and the output current is achieved by using first generation current conveyors in configuration of simple voltage-to-current converters. The control voltages of the DC and the AC output currents are completely independent of each other. The current source is intended for the generation of small currents in a sub-microampere range and in a frequency range of a few hundreds of megahertz. The measured and simulated results confirm that the smallest amplitudes of the generated currents are down to 100 nA, with a single supply voltage of 1.3 V. The small-signal bandwidth ranges from 15 up to 900 MHz.

Keywords

AC current gain BiCMOS analog integrated circuits Current conveyor DC current gain Low voltage design Voltage-controlled current source 

References

  1. 1.
    Tadić, N., Marchlewski, A., & Zimmermann, H. (2009). A 122 TΩ Hz transimpedance bandwidth product BiCMOS optical sensor front-end with a 54.7 dB voltage-controlled photo-sensitivity range. Analog Integrated Circuits and Signal Processing, 61, 19–33.CrossRefGoogle Scholar
  2. 2.
    Tadić, N., Goll, B., & Zimmermann, H. (2017). Laser diode current driver with (1 − t/T)−1 time dependence in 0.35 μm BiCMOS technology for quantum random number generators. IEEE Transactions on Circuits and Systems, part II: Express: Briefs, 64, 510–514.CrossRefGoogle Scholar
  3. 3.
    Nedungadi, A. (1981). Accurate submicroampere controlled current source. Electronics Letters, 17, 320–322.CrossRefGoogle Scholar
  4. 4.
    Kalenteridis, V., Vlassis, S., & Siskos, S. (2012). 1.5-V CMOS exponential current generator. Analog Integrated Circuits and Signal Processing, 72, 333–341.CrossRefGoogle Scholar
  5. 5.
    Zhang, G., Saw, S., Liu, J., Sterrantino, S., Johnson, D. K., & Jung, S. (2006). An accurate current source with on-chip self-calibration circuits for low-voltage current-mode differential drivers. IEEE Transactions on Circuits and Systems, part I: Regular Papers, 53, 40–47.CrossRefGoogle Scholar
  6. 6.
    Serrano-Gotarredona, T., Linares-Barranco, B., & Andreou, A. G. (1999). Very wide range tunable CMOS/bipolar current mirrors with voltage clamped input. IEEE Transactions on Circuits and System, Part: Fundamental Theory and Applicatons, 46, 1398–1407.CrossRefGoogle Scholar
  7. 7.
    Dai, S., & Rosenstein, J. K. (2017). A 15-V bidirectional current clamp circuit for integrated patch clamp electrophysiology. IEEE Transactions on Circuits and Systems, Part II: Express Briefs, 64, 1287–1291.CrossRefGoogle Scholar
  8. 8.
    Sedra, A. S., & Roberts, G. (1990). Current conveyor theory and practice. In C. Toumazou, F. J. Lidgey, & D. G. Haigh (Eds.), Analogue IC design: The current-mode approach (Chap. 3, pp. 93–126). Stevenage: Peter Peregrinus.Google Scholar
  9. 9.
    Wilson, B. (1989). Performance analysis of current conveyors. Electronics Letters, 25, 1596–1598.CrossRefGoogle Scholar
  10. 10.
    Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2001). Analysis and design of analog integrated circuits (4th ed.). New York: Wiley.Google Scholar
  11. 11.
    Carusone, T. C., Johns, D., & Martin, K. (2012). Analog integrated circuit design (2nd ed.). New York: Wiley.Google Scholar
  12. 12.
    de Wit, M. (1995). Temperature independent resistor. U.S. Patent 5448103 A.Google Scholar
  13. 13.
    Gregoire, B. R., & Moon, U.-K. (2007). Process-independent resistor temperature-coefficients using series/parallel and parallel/series composite resistors. In Proceedings of international symposium on circuits and systems (pp. 2826–2829).Google Scholar
  14. 14.
    Chiang, Y.-H., & Liu, S.-I. (2013). A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation. IEEE Transactions on Circuits and Systems, part II: Express Briefs, 60, 837–841.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electrodynamics, Microwave and Circuit EngineeringTechnische Universität WienViennaAustria
  2. 2.Faculty of Electrical EngineeringUniversity of MontenegroPodgoricaMontenegro

Personalised recommendations