Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 1, pp 201–207 | Cite as

Voltage-mode third-order quadrature sinusoidal oscillator using VDIBAs

  • K. L. PushkarEmail author
  • D. R. Bhaskar
Mixed Signal Letter
  • 52 Downloads

Abstract

A third-order quadrature sinusoidal oscillator (TOQSO) is proposed employing two voltage differencing inverting buffered amplifiers (VDIBAs), three grounded capacitors and a resistor. The proposed TOQSO enjoys electronically tunable, non-interactive condition and frequency control. The TOQSO uses all grounded capacitors, which is suitable for IC implementation. Moreover, the internal CMOS realization of VDIBA is possibly the simplest among all recently introduced new active building blocks. SPICE simulation results have been provided to support the validity of proposed TOQSO using TSMC 0.18 µm technology.

Keywords

Voltage differencing inverting buffered amplifier Third-order quadrature sinusoidal oscillator Voltage-mode 

Notes

Acknowledgements

The authors gratefully acknowledge Professor Raj Senani and Professor Pragati Kumar for their valuable suggestions/modifications in the preparation of this manuscript. The authors also wish to thank the anonymous reviewers for their constructive comments and suggestions.

References

  1. 1.
    Horng, J. W., Hou, C. L., Chang, C. M., Chung, W. Y., Tang, H. W., & Wen, Y. H. (2005). Quadrature oscillators using CCIIs. International Journal of Electronics, 92, 21–31.Google Scholar
  2. 2.
    Gibson, J. D. (1997). The communication handbook. Boca Raton: CRC Press.zbMATHGoogle Scholar
  3. 3.
    Senani, R., Bhaskar, D. R., Singh, V. K., & Sharma, R. K. (2016). Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks. Cham: Springer. ISBN 987-3-319-23712-1.Google Scholar
  4. 4.
    Chen, H. P., Hwang, Y. S., & Ku, Y. T. (2017). A systematic realization of third-order quadrature oscillator with controllable amplitude. International Journal of Electronics and Communications, 79, 64–73.Google Scholar
  5. 5.
    Lawanwisut, S., & Siripruchyanun, M. (2009). High output-impedance current-mode third-order quadrature oscillator based on CCCCTAs. In Proceedings of the IEEE region 10 conference (TENCON ‘09), pp. 1–4.Google Scholar
  6. 6.
    Pushkar, K. L. (2017). Voltage-mode third-order quadrature sinusoidal oscillator using VDBAs. Circuits and Systems, 8(12), 285–292.Google Scholar
  7. 7.
    Maheshwari, S. (2009). Quadrature oscillator using grounded components with current and voltage outputs. IET Circuits Devices Systems, 3(4), 153–160.Google Scholar
  8. 8.
    Horng, J. W. (2009). Current-mode third-order quadrature oscillator using CDTAs. Active and Passive Electronic Components.  https://doi.org/10.1155/2009/789171.Google Scholar
  9. 9.
    Horng, J. W., Lee, H., & Wu, J. Y. (2010). Electronically tunable third-order quadrature oscillator using CDTAs. Radioengineering, 19(2), 326–330.Google Scholar
  10. 10.
    Maheshwari, S. (2010). Current-mode third-order quadrature oscillator. IET Circuits Devices Systems, 4(3), 188–195.Google Scholar
  11. 11.
    Horng, J. W. (2011). Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and ground capacitor. Indian Journal of Pure and Applied Physics, 49, 494–498.Google Scholar
  12. 12.
    Maheshwari, S., & Verma, R. (2012). Electronically tunable sinusoidal oscillator circuit. Active and Passive Electronic Components.  https://doi.org/10.1155/2012/719376.Google Scholar
  13. 13.
    Chaturvedi, B., & Maheshwari, S. (2013). Third-order quadrature oscillator circuit with current and voltage outputs. ISRN Electronics.  https://doi.org/10.1155/2013/385062.Google Scholar
  14. 14.
    Pandey, R., Pandey, N., Komanapalli, G., & Anurag, R. (2014). OTRA based voltage mode third order quadrature oscillator. ISRN Electronics.  https://doi.org/10.1155/2014/126471.Google Scholar
  15. 15.
    Rai, S. K., & Gupta, M. (2015). A third order quadrature sinusoidal oscillator based on CMOS/FGCMOS Inverters. In International conference on signal processing, computing and control (2015 ISPCC).Google Scholar
  16. 16.
    Pandey, N., & Pandey, R. (2015). Approach for third order quadrature oscillator realization. IET Circuits Devices Systems, 9(3), 161–171.Google Scholar
  17. 17.
    Malhotra, C., Ahalawat, V., Kumar, V. V., Pandey, R., & Pandey, N. (2016). Voltage differencing buffered amplifier based quadrature oscillator. In 1st IEEE international conference on power electronics, intelligent control and energy systems (ICPEICES-2016).Google Scholar
  18. 18.
    Khaw-ngam, K., Kumngern, M., & Khateb, F. (2017). Mixed-mode third-order quadrature oscillator based on single MCCFTA. Radio Engineering, 26(2), 522–535.Google Scholar
  19. 19.
    Hua-Pin, C., Yuh-Shyan, H., & Yi-Tsen, K. (2017). A systematic realization of third-order quadrature oscillator with controllable amplitude. International Journal of Electronics and Communications, 79(2), 64–73.Google Scholar
  20. 20.
    Hua-Pin, C., Yuh-Shyan H., & Yi-Tsen K. (2018). A new resistorless and electronic tunable third-order quadrature oscillator with current and voltage outputs. IETE Technical Review, 35(4), 426–438.Google Scholar
  21. 21.
    Prommee, P., & Dejhan, K. (2002). An integrable electronic-controlled quadrature sinusoidal oscillator using CMOS operational transconductance amplifier. International Journal of Electronics, 89(5), 365–379.Google Scholar
  22. 22.
    Herencsar, N., Minaei, S., Koton, J., Yuce, E., & Vrba, K. (2013). New resistorless and electronically tunable realization of dual-output vm all-pass filter using VDIBA. Analog Integrated Circuits and Signal Processing, 74(1), 141–154.Google Scholar
  23. 23.
    Herencsar, N., Cicekoglu, O., Sotner, R., Koton, J., & Vrba, K. (2013). New resistorless tunable voltage-mode universal filter using single VDIBA. Analog Integrated Circuits and Signal Processing, 76(2), 251–260.Google Scholar
  24. 24.
    Pushkar, K. L., Bhaskar, D. R., & Prasad, D. (2013). Voltage-mode new universal biquad filter configuration using a single VDIBA. Circuits, Systems, and Signal Processing, 33(1), 275–285.Google Scholar
  25. 25.
    Pushkar, K. L., Singh, G., & Goel, R. K. (2017). CMOS VDIBAs-based single-resistance-controlled voltage-mode sinusoidal oscillator. Circuits and Systems, 8(1), 14–22.Google Scholar
  26. 26.
    Pushkar, K. L., & Bhaskar, D. R. (2018). New single-element-controlled sinusoidal oscillator using single VDIBA. Journal of Engineering Technology, 6(1), 595–604.Google Scholar
  27. 27.
    Pushkar, K. L. (2017). Electronically controllable sinusoidal oscillator employing VDIBAs. Theoretical and Applied Electrical Engineering, 15(5), 799–805.Google Scholar
  28. 28.
    Tangsrirat, W. (2017). Synthetic grounded lossy inductance simulators using single VDIBA. IETE Journal of Research, 63(1), 134–141.Google Scholar
  29. 29.
    Channumsin, O., & Tangsrirat, W. (2017). VDIBA-based sinusoidal quadrature oscillator. Przeglad Elektrotechniczny, 93(3), 248–251.Google Scholar
  30. 30.
    Minaei, S., & Yuce, E. (2010). Novel voltage-mode all-pass filter based on using DVCCs. Circuits System and Signal Processing, 29(3), 391–402.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMaharaja Agrasen Institute of TechnologyRohini, New DelhiIndia
  2. 2.Department of Electronics and Communication EngineeringDelhi Technological UniversityRohiniIndia

Personalised recommendations