Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 1, pp 193–200 | Cite as

A 24–28 GHz high-stability CMOS power amplifier using common-gate-shorting (CGS) technique with 17.5 dBm \({\hbox {P}}_{sat}\) and 16.3% PAE for 5G millimeter-wave applications

  • Chunshen Jiang
  • Runxi ZhangEmail author
  • Chunqi Shi
Mixed Signal Letter
  • 90 Downloads

Abstract

This paper presents a 24–28 GHz high-stability millimeter-wave power amplifier (PA) implemented in low-cost \(0.13\, \upmu \hbox {m}\) CMOS process. The PA consists of two cascode stages with passive transformer-based input and output baluns. The common-gate-shorting technique is proposed for high-stability and high-gain millimeter-wave cascode stage. To realize this technique, an interdigited powercell structure is adopted for MOS layout optimization. In order to improve \(\hbox {P}_{out}\) and PAE, an inter-stage inductor is introduced. The proposed PA achieves a PAE over 16.3% with a saturated output power of 17.5 dBm. The maximum gain is 21.2 dB at 26 GHz.

Keywords

Millimeter-wave Power amplifier CMOS Balun High-stability Common-gate-shorting Interdigited structure 

Notes

Acknowledgements

The author would like to thank the chip fabrication support from GlobalFoundries China top university program. The authors would also like to thank the measurement help of Jian Zhang, Rui Tong and Xiaowei Sun from Shanghai Institute of Microsystem and Information Technology (SIMIT). Funding was provided by National Natural Science Foundation of China (Grant No. 61306034).

References

  1. 1.
    Alsuraisry, H., Cheng, J. H., Luo, S. J., Lin, W. J., Tsai, J. H., & Huang, T. W. (2015). A 24-GHz transformer-based stacked-FET power amplifier in 90-nm CMOS technology. In 2015 Asia-Pacific Microwave Conference (APMC), volume 3, pp. 1–3.Google Scholar
  2. 2.
    Chen, P. W., He, J., Luo, J., Wang, H., Chang, S., Huang, Q. J., Yu, H., & Yu, X. P. (2016). Fully integrated pseudo differential K-band power amplifier in \(0.13\upmu \text{m}\) standard CMOS. In 2016 International Symposium on Integrated Circuits (ISIC), pp. 1–4.Google Scholar
  3. 3.
    Kim, H., Bae, J., Oh, S., Lim, W., Yang, Y. (2017). Design of two-stage fully-integrated CMOS power amplifier for K-band applications. In 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 493–496.Google Scholar
  4. 4.
    Liu, J. Y. C., Chan, C. T., & Hsu, S. S. H. (2014). A K-band power amplifier with adaptive bias in 90-nm CMOS. In 2014 9th European Microwave Integrated Circuit Conference, pp. 432–435.Google Scholar
  5. 5.
    Shakib, S., Elkholy, M., Dunworth, J., Aparin, V., & Entesari, K. (2017). A wideband 28GHz power amplifier supporting \(8\times 100\text{ MHz }\) carrier aggregation for 5G in 40nm CMOS. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 44–45.Google Scholar
  6. 6.
    Shakib, S., Park, H. C., Dunworth, J., Aparin, V., & Entesari, K. (2016). A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS. IEEE Journal of Solid-State Circuits, 51(12), 3020–3036.CrossRefGoogle Scholar
  7. 7.
    Lu, D., Rutledge, D., Kovacevic, M., & Hacker, J. (2002). A 24-GHz patch array with a power amplifier/low-noise amplifier MMIC. International Journal of Infrared and Millimeter Waves, 23(5), 693–704.CrossRefGoogle Scholar
  8. 8.
    Niknejad, A. M., Hashemi, H., Cathelin, A., Pekarik, J. J., Niknejad, A. M., Emami, S., et al. (2008). mm-Wave silicon technology. New York: Springer.CrossRefGoogle Scholar
  9. 9.
    Komijani, A., Natarajan, A., & Hajimiri, A. (2005). A 24-GHz, +14.5-dBm fully integrated power amplifier in \(0.18-\upmu \text{ m }\) CMOS. IEEE Journal of Solid-State Circuits, 40(9), 1901–1908.CrossRefGoogle Scholar
  10. 10.
    Gu, Q. J., Xu, Z., & Chang, M. C. F. (2012). Two-way current-combining \({W}\)-band power amplifier in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 60(5), 1365–1374.CrossRefGoogle Scholar
  11. 11.
    Chowdhury, D., Reynaert, P., & Niknejad, A. M. (2009). Design considerations for 60 GHz transformer-coupled CMOS power amplifiers. IEEE Journal of Solid-State Circuits, 44(10), 2733–2744.CrossRefGoogle Scholar
  12. 12.
    Lin, Y.-S., & Chang, J.-N. (2014). A 24-GHz power amplifier with Psat of 15.9 dBm and PAE of 14.6% using standard \(0.18\,\mu \text{ m }\) CMOS technology. Analog Integrated Circuits and Signal Processing, 79(3), 427–435.CrossRefGoogle Scholar
  13. 13.
    Mosalam, H., Allam, A., Abdel-Rahman, A., Kaho, T., Jia, H., & Pokharel, R. K. (2016). A high-efficiency good linearity 21 to 26.5 GHz fully integrated power amplifier using \(0.18\,\upmu \text{ m }\) CMOS technology. In 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1–4.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microelectronic Circuits and SystemsEast China Normal UniversityShanghaiChina

Personalised recommendations