Wide band digital predistortion using iterative feedback decomposition

  • Ahmad ShokairEmail author
  • Ali Beydoun
  • Dang-Kièn Germain Pham
  • Chadi Jabbour
  • Patricia Desgreys


This paper presents a new digital predistortion (DPD) technique for wide band applications. Digital predistortion is the most useful linearization technique to reduce power amplifier (PA) nonlinearity effects due to its high flexibility and low complexity. However, this technique requires high performances ADC to digitize the feedback signal whose bandwidth is equal to several times the original bandwidth due to spectral regrowth generated by the PA nonlinearity. This point represents one of the main bottlenecks for the deployment of the wideband LTE-A standard. The method proposed in this paper calculates the DPD coefficients iteratively using an ADC with a fixed bandwidth equal to the original bandwidth. The proposed method has been simulated and compared with other methods using Matlab. Simulation results show that the proposed method has almost the same performance as the other methods with an ACPR of − 60 dB. Moreover, it reduces considerably the constraints on the ADC and the power calculation resources.


Digital predistortion (DPD) Power amplifiers (PA) Green communication Memory effect Analog to digital converter (ADC) 


  1. 1.
    Qualcomm. The 1000x data challenge. 2013. invention/1000x.
  2. 2.
    Mämmelä, A. (2015). Energy efficiency in 5G networks. In IFIP networking 2015, Toulouse, France. May 20, 2015.Google Scholar
  3. 3.
    Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys & Tutorials, 13, 524–540.CrossRefGoogle Scholar
  4. 4.
    Li, F. (2015). Linearization of power amplifiers in wide band communication systems by digital baseband predistortion technique. PhD thesis. Universite de Nantes.Google Scholar
  5. 5.
    Soury, A., & Ngoya, E. (2005). Modeling long term memory effects in microwave power amplifiers for system level simulations. Annales Des Télécommunications, 60(11), 1488–1506.Google Scholar
  6. 6.
    Berland, C., Bercher, J.-F., & Venard, O. (2010). Adaptive gain and delay mismatch cancellation for LINC transmitter. Analog Integrated Circuits and Signal Processing, 65(1), 151–156.CrossRefGoogle Scholar
  7. 7.
    Tabatabai, F., & Al-Raweshidy, H. S. (2007). Feedforward linearization technique for reducing nonlinearity in semiconductor optical amplifier. Journal of Lightwave Technology, 25(9), 2667–2674.CrossRefGoogle Scholar
  8. 8.
    Vuolevi, J. H. K., Rahkonen, T., & Manninen, J. P. A. (2001). Measurement technique for characterizing memory effects in RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 49(8), 1383–1389.CrossRefGoogle Scholar
  9. 9.
    Guan, L., & Zhu, A. (2014). Green communications: Digital predistortion for wideband RF power amplifiers. IEEE Microwave Magazine, 15(7), 84–99.CrossRefGoogle Scholar
  10. 10.
    Liu, Y. et al. (2014). A new digital predistortion using indirect learning with constrained feedback bandwidth for wideband power amplifiers. In IEEE MTT-S international microwave symposium digest (pp. 0–2).Google Scholar
  11. 11.
    Hussein, M. A., & Venard, O. (2014). Subband digital predistorsion based on Indirect Learning Architecture. In ICASSP, IEEE international conference on acoustics, speech and signal processing—Proceedings (pp. 7974–7978).Google Scholar
  12. 12.
    Naraharisetti, N., et al. (2013). Quasi-exact inverse PA model for digital predistorter linearization. In 82nd ARFTG microwave measurement conference (pp. 1–4).Google Scholar
  13. 13.
    Liu, Y. (2014). Novel technique for wideband digital predistortion of power amplifiers with an under-sampling ADC. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2604–2617.CrossRefGoogle Scholar
  14. 14.
    Zhang, L., & Feng, Y. (2014) An improvement iterative approach for wideband digital predistortion using under-sampling. In: 2014 IEEE China summit international conference on signal and information processing (ChinaSIP) (pp. 664–667).Google Scholar
  15. 15.
    Singla, R., & Sharma, S. (2012). Digital predistortion of power amplifiers using look-up table method with memory effects for LTE wireless systems. EURASIP Journal on Wireless Communications and Networking2012(1), 330.CrossRefGoogle Scholar
  16. 16.
    Saleh, A. A. M. (1981). Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers. IEEE Transactions on Communications, 29(11), 1715–1720.CrossRefGoogle Scholar
  17. 17.
    Mkadem, F., et al. (2014). Complexity-reduced Volterra series model for power amplifier digital predistortion. Analog Integrated Circuits and Signal Processing, 79(2), 331–343.CrossRefGoogle Scholar
  18. 18.
    Boulejfen, N., et al. (2010). Analytical prediction of spectral regrowth and correlated and uncorrelated distortion in multicarrier wireless transmitters exhibiting memory effects. IET Microwaves, Antennas & Propagation, 4(6), 685.CrossRefGoogle Scholar
  19. 19.
    Ding, L. (2006). A least-squares/Newton method for digital predistortion of wideband signals. IEEE Transactions on Communications, 54(5), 833–840.CrossRefGoogle Scholar
  20. 20.
    Pham, D. K. G., et al. (2013). High-level design of general multi-stage noise band cancellation Sigma Delta ADC optimized for nonlinearly distorted signals. Analog Integrated Circuits and Signal Processing, 77(2), 235–245.CrossRefGoogle Scholar
  21. 21.
    Pham, D. K. G., et al. (2012). Multi-stage noise band cancellation modulator for digitisation of distorted signals. Electronics Letters, 48(10), 560.CrossRefGoogle Scholar
  22. 22.
    Ding, L. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmad Shokair
    • 1
    Email author
  • Ali Beydoun
    • 1
  • Dang-Kièn Germain Pham
    • 2
  • Chadi Jabbour
    • 2
  • Patricia Desgreys
    • 2
  1. 1.HKS Laboratory, Physics and Electronics Department, Faculty of SciencesLebanese UniversityBeirutLebanon
  2. 2.LTCI, Télécom ParisTechUniversité Paris-SaclayParisFrance

Personalised recommendations