Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 97, Issue 3, pp 515–531 | Cite as

Ambient RF energy harvesting system: a review on integrated circuit design

  • Gabriel Chong
  • Harikrishnan RamiahEmail author
  • Jun Yin
  • Jagadheswaran Rajendran
  • Wong Wei Ru 
  • Pui-In Mak
  • Rui P. Martins
Article
  • 556 Downloads

Abstract

This paper presents a comprehensive review of ambient RF energy harvester circuitry working on integrated circuits. The review covers 3 main blocks in an RF energy harvesting system implemented on chip. The blocks are the rectifier, impedance matching circuit and power management unit. The review of each block includes its operational principle, reported state-of-the-art circuit enhancement techniques, and design trade-offs. We compare the circuits in each block with respect to the techniques adopted to improve the performances for RF energy harvesting. To identify the benefits and limitations associated with the architecture we discuss the advantages and disadvantages of the circuit topologies in each block of an ambient RF energy harvester.

Keywords

Ambient RF energy harvesting Integrated circuit Rectifier Impedance matching network Power management unit 

Notes

Acknowledgements

This work was supported by Partnership Grant (RK001-2018).

References

  1. 1.
    Visser, H. J., & Vullers, R. J. M. (2013). RF energy harvesting and transport for wireless sensor network applications: Principles and requirements. Proceedings of the IEEE, 101(6), 1410–1423.Google Scholar
  2. 2.
    Piñuela, M., Mitcheson, P. D., & Lucyszyn, S. (2013). Ambient RF energy harvesting in urban and semi-urban environments. IEEE Transactions on Microwave Theory and Techniques, 61(7), 2715–2726.Google Scholar
  3. 3.
    Vyas, R. J., Cook, B. B., Kawahara, Y., & Tentzeris, M. M. (2013). E-WEHP: A batteryless embedded sensor-platform wirelessly powered from ambient digital-TV signals. IEEE Transactions on Microwave Theory and Techniques, 61(6), 2491–2505.Google Scholar
  4. 4.
    Barroca, N., et al. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), London (pp. 532–537).Google Scholar
  5. 5.
    Takhedmit, H. (2016). Ambient RF power harvesting: Application to remote supply of a batteryless temperature sensor. In 2016 IEEE international smart cities conference (ISC2), Trento (pp. 1–4).Google Scholar
  6. 6.
    Mimis, K., Gibbins, D., Dumanli, S., & Watkins, G. T. (2015). Ambient RF energy harvesting trial in domestic settings. IET Microwaves, Antennas and Propagation, 9(5), 454–462.Google Scholar
  7. 7.
    Andrenko, A. S., Lin, X. & Zeng, M. (2015). Outdoor RF spectral survey: A roadmap for ambient RF energy harvesting. In TENCON 2015—2015 IEEE region 10 conference, Macao (pp. 1–4).Google Scholar
  8. 8.
    Zhang, Y., et al. (2013). Batteryless 19 µW MICS/ISM-band energy harvesting body sensor node SoC for ExG applications. IEEE Journal of Solid-State Circuits, 48(1), 199–213.Google Scholar
  9. 9.
    Mansano, A. L., Li, Y., Bagga, S., & Serdijn, W. A. (2016). An autonomous wireless sensor node with asynchronous ECG monitoring in 0.18 µm CMOS. IEEE Transactions on Biomedical Circuits and Systems, 10(3), 602–611.Google Scholar
  10. 10.
    Kim, Y. J., Bhamra, H. S., Joseph, J., & Irazoqui, P. P. (2015). An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(11), 1028–1032.Google Scholar
  11. 11.
    Rajavi, Y., Taghivand, M., Aggarwal, K., Ma, A., & Poon, A. S. Y. (2017). An RF-powered FDD radio for neural microimplants. IEEE Journal of Solid-State Circuits, 52(5), 1221–1229.Google Scholar
  12. 12.
    Liu, J., Xiong, K., Fan, P., & Zhong, Z. (2017). RF energy harvesting wireless powered sensor networks for smart cities. IEEE Access, 5, 9348–9358.Google Scholar
  13. 13.
    Kumar, A., & Hancke, G. P. (2014). An energy-efficient smart comfort sensing system based on the IEEE 1451 standard for green buildings. IEEE Sensors Journal, 14(12), 4245–4252.Google Scholar
  14. 14.
    Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2399–2408.Google Scholar
  15. 15.
    Papotto, G., Greco, N., Finocchiaro, A., Guerra, R., Leotta, S., & Palmisano, G. (2018). An RF-powered transceiver exploiting sample and hold operation on the received carrier. IEEE Transactions on Microwave Theory and Techniques, 66(1), 396–409.Google Scholar
  16. 16.
    Kang, J., Rao, S., Chiang, P., & Natarajan, A. (2016). Design and optimization of area-constrained wirelessly powered CMOS UWB SoC for localization applications. IEEE Transactions on Microwave Theory and Techniques, 64(4), 1042–1054.Google Scholar
  17. 17.
    Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 22–57.Google Scholar
  18. 18.
    Kim, S., et al. (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649–1666.Google Scholar
  19. 19.
    Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Springer open Tran et al. Micro and Nano System Letters, 2017, 5–14.Google Scholar
  20. 20.
    Lee, S. Y., Hong, J. H., Hsieh, C. H., Liang, M. C., & Kung, J. Y. (2013). A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices. IEEE Transactions on Biomedical Circuits and Systems, 7(3), 256–265.Google Scholar
  21. 21.
    Hwang, Y. S., Hwang, B. H., Lin, H. C., & Chen, J. J. (2013). PLL-based contactless energy transfer analog FSK demodulator using high-efficiency rectifier. IEEE Transactions on Industrial Electronics, 60(1), 280–290.Google Scholar
  22. 22.
    Wu, C. Y., Qian, X. H., Cheng, M. S., Liang, Y. A., & Chen, W. M. (2014). A 13.56 MHz 40 mW CMOS high-efficiency inductive link power supply utilizing on-chip delay-compensated voltage doubler rectifier and multiple LDOs for implantable medical devices. IEEE Journal of Solid-State Circuits, 49(11), 2397–2407.Google Scholar
  23. 23.
    Lu, Y., & Ki, W. H. (2014). A 13.56 MHz CMOS active rectifier with switched-offset and compensated biasing for biomedical wireless power transfer systems. IEEE Transactions on Biomedical Circuits and Systems, 8(3), 334–344.Google Scholar
  24. 24.
    Iguchi, S., Yeon, P., Fuketa, H., Ishida, K., Sakurai, T., & Takamiya, M. (2015). Wireless power transfer with zero-phase-difference capacitance control. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(4), 938–947.MathSciNetGoogle Scholar
  25. 25.
    Li, X., Meng, X., Tsui, C. Y., & Ki, W. H. (2015). Reconfigurable resonant regulating rectifier with primary equalization for extended coupling- and loading-range in bio-implant wireless power transfer. IEEE Transactions on Biomedical Circuits and Systems, 9(6), 875–884.Google Scholar
  26. 26.
    Li, X., Tsui, C. Y., & Ki, W. H. (2015). A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. IEEE Journal of Solid-State Circuits, 50(4), 978–989.Google Scholar
  27. 27.
    Park, H. G., et al. (2016). A design of a wireless power receiving unit with a high-efficiency 6.78-MHz active rectifier using shared DLLs for magnetic-resonant A4 WP applications. IEEE Transactions on Power Electronics, 31(6), 4484–4498.Google Scholar
  28. 28.
    Kuo, N. C., Zhao, B., & Niknejad, A. M. (2018). Novel inductive wireless power transfer uplink utilizing rectifier third-order nonlinearity. IEEE Transactions on Microwave Theory and Techniques, 66(1), 319–331.Google Scholar
  29. 29.
    Kim, C., Ha, S., Park, J., Akinin, A., Mercier, P. P., & Cauwenberghs, G. (2017). A 144-MHz fully integrated resonant regulating rectifier with hybrid pulse modulation for mm-sized implants. IEEE Journal of Solid-State Circuits, 52(11), 3043–3055.Google Scholar
  30. 30.
    Cheng, L., Ki, W. H., & Tsui, C. Y. (2017). A 6.78-MHz single-stage wireless power receiver using a 3-mode reconfigurable resonant regulating rectifier. IEEE Journal of Solid-State Circuits, 52(5), 1412–1423.Google Scholar
  31. 31.
    Ghanad, M. A., Green, M. M., & Dehollain, C. (2017). A 30 µW remotely powered local temperature monitoring implantable system. IEEE Transactions on Biomedical Circuits and Systems, 11(1), 54–63.Google Scholar
  32. 32.
    Lu, Y., Huang, M., Cheng, L., Ki, W. H., U, S. P., & Martins, R. P. (2017). A dual-output wireless power transfer system with active rectifier and three-level operation. IEEE Transactions on Power Electronics, 32(2), 927–930.Google Scholar
  33. 33.
    Bai, X., Kong, Z. H., & Siek, L. (2017). A high-efficiency 6.78-MHz full active rectifier with adaptive time delay control for wireless power transmission. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1297–1306.Google Scholar
  34. 34.
    Moghaddam, A. K., Chuah, J. H., Ramiah, H., Ahmadian, J., Mak, P. I., & Martins, R. P. (2017). A 73.9%-efficiency CMOS rectifier using a lower DC feeding (LDCF) self-body-biasing technique for far-field RF energy-harvesting systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(4), 992–1002.Google Scholar
  35. 35.
    Pozar, D. M. (2012). Microwave engineering (4th ed.). Hoboken, NJ: Wiley.Google Scholar
  36. 36.
    Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.Google Scholar
  37. 37.
    Karthaus, U., & Fischer, M. (2003). Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power. IEEE Journal of Solid-State Circuits, 38(10), 1602–1608.Google Scholar
  38. 38.
    Lu, Y., et al. (2017). A wide input range dual-path CMOS rectifier for RF energy harvesting. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(2), 166–170.Google Scholar
  39. 39.
    Dickson, J. F. (1976). On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE Journal of Solid-State Circuits, 11(3), 374–378.Google Scholar
  40. 40.
    Umeda, T., Yoshida, H., Sekine, S., Fujita, Y., Suzuki, T., & Otaka, S. (2006). A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE Journal of Solid-State Circuits, 41(1), 35–41.Google Scholar
  41. 41.
    Nakamoto, H., et al. (2006). A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology. IEEE Journal of Solid-State Circuits, 42(1), 101–110.MathSciNetGoogle Scholar
  42. 42.
    Le, T., Mayaram, K., & Fiez, T. (2008). Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE Journal of Solid-State Circuits, 43(5), 1287–1302.Google Scholar
  43. 43.
    Papotto, G., Carrara, F., & Palmisano, G. (2011). A 90-nm CMOS threshold-compensated RF energy harvester. IEEE Journal of Solid-State Circuits, 46(9), 1985–1997.Google Scholar
  44. 44.
    Giannakas, G., Plessas, F., & Stamoulis, G. (2012). Pseudo-FG technique for efficient energy harvesting. Electronics Letters, 48(9), 522–523.Google Scholar
  45. 45.
    Scorcioni, S., Larcher, L., & Bertacchini, A. (2013). A reconfigurable differential CMOS RF energy scavenger with 60% peak efficiency and −21 dBm sensitivity. IEEE Microwave and Wireless Components Letters, 23(3), 155–157.Google Scholar
  46. 46.
    Mansano, A., Bagga, S., & Serdijn, W. (2013). A high efficiency orthogonally switching passive charge pump rectifier for energy harvesters. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(7), 1959–1966.Google Scholar
  47. 47.
    Xia, L., Cheng, J., Glover, N. E., & Chiang, P. (2014). 0.56 V, −20 dBm RF-powered, multi-node wireless body area network system-on-a-chip with harvesting-efficiency tracking loop. IEEE Journal of Solid-State Circuits, 49(6), 1345–1355.Google Scholar
  48. 48.
    Wang, Y. J., Liao, I. N., Tsai, C. H., & Pakasiri, C. (2014). A millimeter-wave in-phase gate-boosting rectifier. IEEE Transactions on Microwave Theory and Techniques, 62(11), 2768–2783.Google Scholar
  49. 49.
    Hameed, Z., & Moez, K. (2014). Hybrid forward and backward threshold-compensated RF-DC power converter for RF energy harvesting. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 4(3), 335–343.Google Scholar
  50. 50.
    Chouhan, S. S., & Halonen, K. (2015). Threshold voltage compensation scheme for RF-to-DC converter used in RFID applications. Electronics Letters, 51(12), 892–894.Google Scholar
  51. 51.
    Hameed, Z., & Moez, K. (2015). A 3.2 V −15 dBm adaptive threshold-voltage compensated RF energy harvester in 130 nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(4), 948–956.MathSciNetGoogle Scholar
  52. 52.
    Gao, H., Matters-Kammerer, M., Harpe, P., & Baltus, P. (2016). A 50–60 GHz mm-wave rectifier with bulk voltage bias in 65-nm CMOS. IEEE Microwave and Wireless Components Letters, 26(8), 631–633.Google Scholar
  53. 53.
    Gharehbaghi, K., Zorlu, Ö., Koçer, F., & Külah, H. (2017). Threshold compensated UHF rectifier with local self-calibrator. IEEE Microwave and Wireless Components Letters, 27(6), 575–577.Google Scholar
  54. 54.
    Luo, Y. S., & Liu, S. I. (2017). A voltage multiplier with adaptive threshold voltage compensation. IEEE Journal of Solid-State Circuits, 52(8), 2208–2214.Google Scholar
  55. 55.
    Taghadosi, M., Albasha, L., Quadir, N., Rahama, Y. A., & Qaddoumi, N. (2017). High efficiency energy harvesters in 65 nm CMOS process for autonomous IoT sensor applications. IEEE Access, 99, 1.Google Scholar
  56. 56.
    Gharehbaghi, K., Koçer, F., & Külah, H. (2017). Optimization of power conversion efficiency in threshold self-compensated UHF rectifiers with charge conservation principle. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2380–2387.Google Scholar
  57. 57.
    Razavi Haeri, A. A., Karkani, M. G., Sharifkhani, M., Kamarei, M., & Fotowat-Ahmady, A. (2017). Analysis and design of power harvesting circuits for ultra-low power applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(2), 471–479.Google Scholar
  58. 58.
    Gharehbaghi, K., Zorlu, Ö., Koçer, F., & Külah, H. (2016). Modelling and efficiency optimisation of UHF Dickson rectifiers. IET Circuits, Devices and Systems, 10(6), 504–513.Google Scholar
  59. 59.
    Oh, S. & Wentzloff, D. D. (2012). A −32dBm sensitivity RF power harvester in 130 nm CMOS. In 2012 IEEE radio frequency integrated circuits symposium, Montreal, QC (pp. 83–486).Google Scholar
  60. 60.
    Mandal, S., & Sarpeshkar, R. (2007). Low-power CMOS rectifier design for RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(6), 1177–1188.Google Scholar
  61. 61.
    Kotani, K., Sasaki, A., & Ito, T. (2009). High-efficiency differential-drive CMOS rectifier for UHF RFIDs. IEEE Journal of Solid-State Circuits, 44(11), 3011–3018.Google Scholar
  62. 62.
    Yoo, J., Yan, L., Lee, S., Kim, Y., & Yoo, H. J. (2011). A 5.2 mW self-configured wearable body sensor network controller and a 12 µW wirelessly powered sensor for a continuous health monitoring system. IEEE Journal of Solid-State Circuits, 45(1), 178–188.Google Scholar
  63. 63.
    Wei, P., et al. (2011). High-efficiency differential RF front-end for a Gen2 RFID tag. IEEE Transactions on Circuits and Systems II: Express Briefs, 58(4), 189–194.Google Scholar
  64. 64.
    Reinisch, H., et al. (2011). A multifrequency passive sensing tag with on-chip temperature sensor and off-chip sensor interface using EPC HF and UHF RFID technology. IEEE Journal of Solid-State Circuits, 46(12), 3075–3088.MathSciNetGoogle Scholar
  65. 65.
    Theilmann, P. T., Presti, C. D., Kelly, D. J., & Asbeck, P. M. (2012). A µW complementary bridge rectifier with near zero turn-on voltage in SOS CMOS for wireless power supplies. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(9), 2111–2124.MathSciNetGoogle Scholar
  66. 66.
    Nguyen, T. T., Feng, T., Häfliger, P., & Chakrabartty, S. (2014). Hybrid CMOS rectifier based on synergistic RF-piezoelectric energy scavenging. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(12), 3330–3338.Google Scholar
  67. 67.
    Burasa, P., Constantin, N. G., & Wu, K. (2014). High-efficiency wideband rectifier for single-chip batteryless active millimeter-wave identification (MMID) tag in 65-nm bulk CMOS technology. IEEE Transactions on Microwave Theory and Techniques, 62(4), 1005–1011.Google Scholar
  68. 68.
    Chouhan, S. S., & Halonen, K. (2015). A novel cascading scheme to improve the performance of voltage multiplier circuits. Analog Integrated Circuits Signal Process, 84(2015), 373–381.Google Scholar
  69. 69.
    Ouda, M. H., Khalil, W., & Salama, K. N. (2016). Wide-range adaptive RF-to-DC power converter for UHF RFIDs. IEEE Microwave and Wireless Components Letters, 26(8), 634–636.Google Scholar
  70. 70.
    Ouda, M. H., Khalil, W., & Salama, K. N. (2017). Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(5), 515–519.Google Scholar
  71. 71.
    Lau, W. W. Y. & Siek, L. (2017). 2.45 GHz wide input range CMOS rectifier for RF energy harvesting. In 2017 IEEE wireless power transfer conference (WPTC), Taipei (pp. 1–4).Google Scholar
  72. 72.
    Lau, W. W. Y. & Siek, L. (2016). A 2.45 GHz CMOS rectifier for RF energy harvesting. In 2016 IEEE wireless power transfer conference (WPTC), Aveiro (pp. 1–3).Google Scholar
  73. 73.
    Abouzied, M. A., & Sánchez-Sinencio, E. (2015). Low-input power-level CMOS RF energy-harvesting front end. IEEE Transactions on Microwave Theory and Techniques, 63(11), 3794–3805.Google Scholar
  74. 74.
    Razavi, B. (2017). Design of analog CMOS integrated circuit (2nd ed.). New York: McGraw-Hill.Google Scholar
  75. 75.
    Barnett, R. et al. (2007). A Passive UHF RFID transponder for EPC Gen 2 with −14dBm sensitivity in 0.13 μm CMOS. In 2007 IEEE international solid-state circuits conference. digest of technical papers, San Francisco, CA (pp. 582–623).Google Scholar
  76. 76.
    Curty, J. P., Joehl, N., Krummenacher, F., Dehollain, C., & Declercq, M. J. (2005). A model for μ-power rectifier analysis and design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2771–2779.Google Scholar
  77. 77.
    Hameed, Z., & Moez, K. (2017). Design of impedance matching circuits for RF energy harvesting systems. Microelectronics Journal, 62(2017), 56–59.Google Scholar
  78. 78.
    Gosset, G., & Flandre, D. (2011). Fully-automated and portable design methodology for optimal sizing of energy-efficient CMOS voltage rectifiers. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1(2), 141–149.Google Scholar
  79. 79.
    Haddad, P. A., Gosset, G., Raskin, J. P., & Flandre, D. (2011). Automated design of a 13.56 MHz 19 µW passive rectifier with 72% efficiency under 10 µA load. IEEE Journal of Solid-State Circuits, 51(5), 1290–1301.Google Scholar
  80. 80.
    Gharehbaghi, K., Koçer, F., & Külah, H. (2017). Optimization of power conversion efficiency in threshold self-compensated UHF rectifiers with charge conservation principle. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(9), 2380–2387.Google Scholar
  81. 81.
    Soltani, N., & Yuan, F. (2010). A high-gain power-matching technique for efficient radio-frequency power harvest of passive wireless microsystems. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(10), 2685–2695.MathSciNetGoogle Scholar
  82. 82.
    Stoopman, M., Keyrouz, S., Visser, H. J., Philips, K., & Serdijn, W. A. (2014). Co-design of a CMOS rectifier and small loop antenna for highly sensitive RF energy harvesters. IEEE Journal of Solid-State Circuits, 49(3), 622–634.Google Scholar
  83. 83.
    Shameli, A., Safarian, A., Rofougaran, A., Rofougaran, M., & De Flaviis, F. (2007). Power harvester design for passive UHF RFID tag using a voltage boosting technique. IEEE Transactions on Microwave Theory and Techniques, 55(6), 1089–1097.Google Scholar
  84. 84.
    De Vita, G., & Iannaccone, G. (2005). Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Transactions on Microwave Theory and Techniques, 53(9), 2978–2990.Google Scholar
  85. 85.
    Hsieh, P. H., Chou, C. H., & Chiang, T. (2015). An RF energy harvester with 44.1% PCE at input available power of −12 dBm. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(6), 1528–1537.MathSciNetGoogle Scholar
  86. 86.
    Stoopman, M., Philips, K., & Serdijn, W. A. (2017). An RF-powered DLL-based 2.4-GHz transmitter for autonomous wireless sensor nodes. IEEE Transactions on Microwave Theory and Techniques, 65(7), 2399–2408.Google Scholar
  87. 87.
    Abouzied, M. A., Ravichandran, K., & Sánchez-Sinencio, E. (2017). A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE Journal of Solid-State Circuits, 52(3), 704–719.Google Scholar
  88. 88.
    Soltani, N., & Tuan, F. (2010). A step-up transformer impedance transformation technique for efficient power harvesting of passive transponders. Microelectronics Journal, 41(2010), 75–84.Google Scholar
  89. 89.
    Gonçalves, H., Martins, M., & Fernandes, J. (2015). Fully integrated energy harvesting circuit with −25-dBm sensitivity using transformer matching. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(5), 446–450.Google Scholar
  90. 90.
    Li, B., Shao, X., Shahshahan, N., Goldsman, N., Salter, T., & Metze, G. M. (2013). An antenna co-design dual band RF energy harvester. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(12), 3256–3266.Google Scholar
  91. 91.
    Li, C. H., Yu, M. C., & Lin, H. J. (2017). A compact 0.9-/2.6-GHz dual-band RF energy harvester using SiP technique. IEEE Microwave and Wireless Components Letters, 27(7), 666–668.Google Scholar
  92. 92.
    Yi, J., Ki, W. H., & Tsui, C. Y. (2007). Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(1), 153–166.Google Scholar
  93. 93.
    Li, C. J., & Lee, T. C. (2014). 2.4-GHz high-efficiency adaptive power. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 434–438.MathSciNetGoogle Scholar
  94. 94.
    Safarian, Z., & Hashemi, H. (2014). Wirelessly powered passive systems with dynamic energy storage mechanism. IEEE Transactions on Microwave Theory and Techniques, 62(4), 1012–1021.Google Scholar
  95. 95.
    Reinisch, H., et al. (2011). An electro-magnetic energy harvesting system with 190 nW idle mode power consumption for a BAW based wireless sensor node. IEEE Journal of Solid-State Circuits, 46(7), 1728–1741.Google Scholar
  96. 96.
    Nariman, M., Shirinfar, F., Pamarti, S., Rofougaran, A., & De Flaviis, F. (2017). High-efficiency millimeter-wave energy-harvesting systems with milliwatt-level output power. IEEE Transactions on Circuits and Systems II: Express Briefs, 64(6), 605–609.Google Scholar
  97. 97.
    Valenta, C. R., Morys, M. M., & Durgin, G. D. (2015). Theoretical energy-conversion efficiency for energy-harvesting circuits under power-optimized waveform excitation. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1758–1767.Google Scholar
  98. 98.
    Collado, A., & Georgiadis, A. (2014). Optimal waveforms for efficient wireless power transmission. IEEE Microwave and Wireless Components Letters, 24(5), 354–356.Google Scholar
  99. 99.
    Kuhn, V., Lahuec, C., Seguin, F., & Person, C. (2015). A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 63(5), 1768–1778.Google Scholar
  100. 100.
    Liu, Z., Zhong, Z., & Guo, Y. X. (2015). Enhanced dual-band ambient RF energy harvesting with ultra-wide power range. IEEE Microwave and Wireless Components Letters, 25(9), 630–632.Google Scholar
  101. 101.
    Lu, J. J., Yang, X. X., Mei, H., & Tan, C. (2016). A four-band rectifier with adaptive power for electromagnetic energy harvesting. IEEE Microwave and Wireless Components Letters, 26(10), 819–821.Google Scholar
  102. 102.
    Song, C., et al. (2016). A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 64(7), 3160–3171.Google Scholar
  103. 103.
    Hsu, C. Y., Lin, S. C., & Tsai, Z. M. (2017). Quadband rectifier using resonant matching networks for enhanced harvesting capability. IEEE Microwave and Wireless Components Letters, 27(7), 669–671.Google Scholar
  104. 104.
    Shen, S., Chiu, C. Y., & Murch, R. D. (2017). A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas and Wireless Propagation Letters, 16, 3071–3074.Google Scholar
  105. 105.
    Colella, R., Pasca, M., Catarinucci, L., Tarricone, L., & D’Amico, S. (2016). High-sensitivity CMOS RF-DC converter in HF RFID band. IEEE Microwave and Wireless Components Letters, 26(9), 732–734.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity MalayaKuala LumpurMalaysia
  2. 2.State Key Laboratory of Analog and Mixed-Signal VLSIUniversity of MacauMacauChina
  3. 3.Collaborative Microelectronic Design Excellence Centre (CEDEC)University Sains MalaysiaPenangMalaysia

Personalised recommendations