Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 1, pp 137–146 | Cite as

A novel ALL-digital low power delay lines based time difference amplifier for coarse-fine TDC

  • Ramin RazmdidehEmail author
  • Mohsen Saneei
Article
  • 65 Downloads

Abstract

In most of digital systems, which require to have high level of resolution, time for digital converter is among the most significant blocks. Time difference amplifier (TDA) is utilized in time to digital converter in order to increase the level of accuracy. In this article, an all-digital TDA is suggested. The proposed TDA consumes delay lines with variation delay for amplifying. The proposed circuit is designed and simulated in 65 nm CMOS technology and obtain gain of six and chip areas about 0.002 mm2. The maximum calculated addition error is about 5%. The TDA harnesses 0.74 mW power under 1.1 V supply voltage.

Keywords

TDA TDC Delay line Low power Time amplifying 

References

  1. 1.
    Yu, J., Dai, F. F., & Jaeger, R. C. (2010). A 12-bit vernier ring time-to-digital converter in 0.13 µm CMOS Technology. IEEE Journal of Solid-State Circuits, 45(4), 830–842.CrossRefGoogle Scholar
  2. 2.
    Hussein, A. I., Vasadi, S., & Paramesh, J. (2018). A 450 fs 65-nm CMOS millimeter-wavetime-to-digital converter using statisticalelement selection for all-digital PLLs. IEEE Journal of Solid-State Circuits, pp(99), 1–18.Google Scholar
  3. 3.
    Vercesi, L., Liscidini, A., & Castello, R. (2010). Two-dimensions Vernier time-to-digital converter. IEEE Journal of Solid-State Circuits, 45(8), 1504–1512.CrossRefGoogle Scholar
  4. 4.
    Song, M., Jung, I., Pamarti, S., & Kim, C. (2013). A 2.4 GHz 0.1-fref-bandwidth all-digital phase-locked loop with delay-cell-less TDC. IEEE Transactions on Circuits and Systems I, 60(12), 3145–3151.CrossRefGoogle Scholar
  5. 5.
    Elshazly, A., Rao, S., Young, B., & Hanumolu, P. K. (2014). A noise-shaping time-to-digital converter using switched-ring oscillators—analysis, design, and measurement techniques. IEEE Journal of Solid-State Circuits, 49(5), 1184–1198.CrossRefGoogle Scholar
  6. 6.
    Hassan, A. H., Ali, A., Ismail, M. W., Refky, M., Ismail, Y., & Mostafa, H. (2017). A 1 GS/s 6-bit time-based analog-to-digital converter (T-ADC) for front-end receivers. In: 60th International midwest symposium on circuits and systems (MWSCAS) (pp. 1605–1608)Google Scholar
  7. 7.
    Cheng, Z., Deen, M. J., & Peng, H. (2016). A low-power gateable Vernier ring oscillator time-to-digital converter for biomedical imaging applications. IEEE Transactions on Biomedical Circuits and Systems, 10(2), 445–454.CrossRefGoogle Scholar
  8. 8.
    Perenzoni, M., Gasparini, L., & Stoppa, D. (2018). Design and Characterization of a 43.2-ps and PVT-resilient TDC for single-photon imaging arrays. IEEE Transactions on Circuits and Systems II: Express Briefs, pp(99), 411–415.Google Scholar
  9. 9.
    Kim, Y., & Kim, T. W. (2014). An 11 b 7 ps resolution two-step time-to-digital converter with 3-D Vernier space. IEEE Transactions on Circuits and Systems I, 61(8), 2326–2336.CrossRefGoogle Scholar
  10. 10.
    Marino, N., Baronti, F., Fanucci, L., Roncella, R., Saponara, S., Bisogni, M. G., & Del Guerra, A. (2013). A novel time to digital converter architecture for time of flight positron emission tomography. Workshop on nordic-mediterranean time-to-digital converters (NoMe TDC) Google Scholar
  11. 11.
    Jansson, J.-P., Koskinen, V., Mäntyniemi, A., & Kostamovaara, J. (2012). A multichannel high-precision CMOS time-to-digital converter for laser-scanner-based perception systems. IEEE Transactions on Instrumentation and Measurement, 61(9), 2581–2590.CrossRefGoogle Scholar
  12. 12.
    Tamborini, D., Markovic, B., Villa, F., & Tosi, A. (2014). 16-channel module based on a monolithic array of single-photon detectors and 10-ps time-to-digital converters. IEEE Journal of Selected Topics in Quantum Electronics, 20(6), 218–225.CrossRefGoogle Scholar
  13. 13.
    Roy, N., Nolet, F., Dubois, F., Mercier, M. O., Fontaine, R., & Pratte, J. F. (2017). Low power and small area, 6.9 ps RMS time-to-digital converter for 3-D digital SiPM. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(6), 486–494.CrossRefGoogle Scholar
  14. 14.
    Liu, Y., Vollenbruch, U., Chen, Y., Wicpalek, C., Maurer, L., Mayer, T., Boos, Z., & Weigel, R.(2008). A 1 GHz ADPLLWith a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 μm CMOS. In IEEE radio and wireless symposium Google Scholar
  15. 15.
    Chen, C. C., Lin, S. H., & Hwang, C. S. (2014). An Area-Efficient CMOS Time-to-Digital Converter Based on a Pulse-Shrinking Scheme. IEEE Transactions on Circuits and Systems, 61(3), 163–167.Google Scholar
  16. 16.
    Staszewski, R. B., Vemulapalli, S., Vallur, P., et al. (2006). 1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS. IEEE Trans on Circuits and Systems II, 53(3), 220–224.CrossRefGoogle Scholar
  17. 17.
    Dudek, P., Szczepanski, S., & Hatfield, J. V. (2000). A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line. IEEE Journal of Solid-State Circuits, 35(2), 240–247.CrossRefGoogle Scholar
  18. 18.
    Chmielewski, K. (2011). Multi-vernier time-to-digital converter implemented in a field-programmable gate array. Measurement Science & Technology, 22(1), 1–4.CrossRefGoogle Scholar
  19. 19.
    Kim, K., Kim, Y. H., Yu, W., & Cho, S. H. (2013). A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier. IEEE Journal of Solid-State Circuits, 48(4), 1009–1017.CrossRefGoogle Scholar
  20. 20.
    Shih, H. Y., Lin, S. K., & Liao, P. S. (2015). An 80 × analog implemented time-difference amplifier for delay-line-based coarse-fine time-to-digital converters in 0.18-μm CMOS. IEEE Transactions on VLSI Systems, 23(8), 1528–1533.CrossRefGoogle Scholar
  21. 21.
    Dehlaghi, B., Magierowski, S., & Belostotski, L. (2011). Highly-linear time-difference amplifier with low sensitivity to process variations. Electronics Letters, 47(13), 743–745.CrossRefGoogle Scholar
  22. 22.
    Kwon, H.-J., Lee, J.-S., Kim, B., Sim, J.-Y., & Park, H.-J. (2014). Analysis of an open-loop time amplifier with a time gain determined by the ratio of bias current. IEEE Transactions on Circuits and Systems II, 61(7), 481–485.CrossRefGoogle Scholar
  23. 23.
    Lee, M., & Abidi, A. A. (2007). A 9b, 1.25 ps resolution coarse-fine time-todigital converter in 90 nm CMOS that amplifies a time residue. In Digest of technical papers IEEE symposium on VLSI circuits (pp. 168–169)Google Scholar
  24. 24.
    Lee, S.-K., Seo, Y.-H., Park, H.-J., & Sim, J.-Y. (2010). A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 µm CMOS. IEEE Journal of Solid-State Circuits, 45(12), 2874–2881.CrossRefGoogle Scholar
  25. 25.
    Wu, J., Zhang, W., Yu, X., Jiang, Q., Zheng, L., & Sun, W. (2017). A hybrid time-to-digital converter based on residual time extraction and amplification. Microelectronics Journal, 63, 148–154.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Bahonar University of KermanKermanIran

Personalised recommendations