Analog Integrated Circuits and Signal Processing

, Volume 98, Issue 2, pp 311–320 | Cite as

Toward an optoelectronic-based visual prosthesis: control unit design and validation

  • Hanen Ben AyedEmail author
  • Mohamed Ali
  • Sreenil Saha
  • Mohamed Masmoudi
  • Mohamad Sawan


We propose a control unit intended for light stimulation of optical nerves (LiSON), which is an optoelectronic-based visual prosthesis. The device is composed of an image sensor array to capture the scene and a miniaturized laser array to stimulate the neural cells forming the optic nerve. The adopted optical stimulation technique is intended to avoid the signal overlapping caused by conventional direct stimulation pathways, and thus improve the image quality. The presented control unit consists of averaging and subtracting the received optical data to reproduce the behavior of bipolar cells, followed by a voltage-controlled oscillator acting as ganglion cells used to transform the signal in a pulse train. The control unit prototype contains an image sensor of 9 × 9 pixels array to validate the operation principles of the proposed system. The chip was fabricated in 0.13 µm CMOS standard technology, and the measurements meet the expectation.


Visual prosthesis Optic nerve stimulation Image sensor array Voltage-controlled oscillator 



The authors would like to thank CMC Microsystems for the design and simulation tools they provided, and for the chip fabrication support.


  1. 1.
    Zrenner, E., & Greger, B. (2014). Restoring vision to the blind: The new age of implanted visual prostheses. Translational Vision Science & Technology, 3(7), 3–13.CrossRefGoogle Scholar
  2. 2.
    Lowery, A. J. (2013). Introducing the Monash vision group’s cortical prosthesis. IEEE International Conference on Image Processing. Scholar
  3. 3.
    Coulombe, J., Sawan, M., & Gervais, J. F. (2007). A highly flexible system for microstimulation of the visual cortex: Design and implementation. IEEE Transactions on Biomedical Circuits and Systems, 1(4), 258–269.CrossRefGoogle Scholar
  4. 4.
    Jeffries, A. M., Killian, N. J., & Pezaris, J. S. (2014). Mapping the primate lateral geniculate nucleus: A review of experiments and methods. Journal of Physiology-Paris, 108(1), 3–10.CrossRefGoogle Scholar
  5. 5.
    Stingl, K., et al. (2013). Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proceedings of the Royal Society, B280(1757), 20130077.CrossRefGoogle Scholar
  6. 6.
    Hsu-Lin, Luo Y., & da Cruz, L. (2016). The Argus® II retinal prosthesis system. Progress in Retinal and Eye Research, 50, 89–107.CrossRefGoogle Scholar
  7. 7.
    Lorach, H., Goetz, G., Smith, R., Lei, X., Mandel, Y., Kamins, T., et al. (2015). Palanker D7. Photovoltaic restoration of sight with high visual acuity. Nature Medicine, 21(5), 476–482.CrossRefGoogle Scholar
  8. 8.
    Sabbah, et al. (2014). Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis. Investigative Ophthalmology & Visual Science, 55(12), 8259–8266.CrossRefGoogle Scholar
  9. 9.
    Sakaguchi, et al. (2009). Artificial vision by direct optic nerve electrode (AV-DONE) implantation in a blind patient with retinitis pigmentosa. Journal of Artificial Organs, 12(3), 206–209.CrossRefGoogle Scholar
  10. 10.
    Lu, Y., Yan, Y., Chai, X., Ren, Q., Chen, Y., & Li, L. (2013). Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats. Journal of Neural Engineering, 10(3), 036022.CrossRefGoogle Scholar
  11. 11.
    Da Cruz, L., et al. (2016). Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology, 123(10), 2248–2254.CrossRefGoogle Scholar
  12. 12.
    Stingl, K., et al. (2015). Subretinal visual implant alpha IMS—clinical trial interim report. Vision Research, 111, 149–160.CrossRefGoogle Scholar
  13. 13.
    Delyfer, M. N., et al. (2018). Adapted surgical procedure for Argus II retinal implantation: Feasibility, safety, efficiency, and postoperative anatomic findings. Ophthalmology Retina, 2(4), 276–287.CrossRefGoogle Scholar
  14. 14.
    Bendali, A., et al. (2015). Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: Model, production and in vivo biocompatibility. Biomaterials, 67, 73–83.CrossRefGoogle Scholar
  15. 15.
    Eleftheriou, C. G., et al. (2017). Carbon nanotube electrodes for retinal implants: A study of structural and functional integration over time. Biomaterials, 112, 108–121.CrossRefGoogle Scholar
  16. 16.
    Soltan, A., McGovern, B., Drakakis, E., Neil, M., Maaskant, P., Akhter, M., et al. (2017). High density, high radiance µLED matrix for optogenetic retinal prostheses and planar neural stimulation. IEEE Transactions on Biomedical Circuits and Systems, 11(2), 1–13.CrossRefGoogle Scholar
  17. 17.
    Bec, J., et al. (2012). Characteristics of laser stimulation by near infrared pulses of retinal and vestibular primary neurons. Lasers in Surgery and Medicine. Scholar
  18. 18.
    Wells, et al. (2007). Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophysical Journal, 93(7), 2567–2580.CrossRefGoogle Scholar
  19. 19.
    Izzo, et al. (2008). Laser stimulation of auditory neurons: Effect of shorter pulse duration and penetration depth. Biophysical Journal, 94(8), 3159–3166.CrossRefGoogle Scholar
  20. 20.
    Wells et al. (2014). Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves, US Patent No. 8, 652,187.Google Scholar
  21. 21.
    Littlefield, et al. (2010). Laser stimulation of single auditory nerve fibers. Laryngoscope, 120(10), 2071–2082.CrossRefGoogle Scholar
  22. 22.
    Dong, N., et al. (2018). Opto-electro-thermal optimization of photonic probesfor optogenetic neural stimulation. Journal of Biophotonics. Scholar
  23. 23.
    Bardin, F., et al. (2011). Infrared laser stimulation of retinal and vestibular neurons. Proc. SPIE, Photonic Therapeutics and Diagnostics VII, 7883, 78834Y.CrossRefGoogle Scholar
  24. 24.
    Albert, et al. (2012). TRPV4 channels mediate the infrared laser-evoked response in sensory neurons. Journal of Neurophysiology, 107(12), 3227–3234.CrossRefGoogle Scholar
  25. 25.
    Ryskamp, et al. (2011). The polymodal ion channel TRPV4 modulates calcium flux, spiking rate and apoptosis of mouse retinal ganglion cells. Journal of Neuroscience, 31(19), 7089–7101.CrossRefGoogle Scholar
  26. 26.
    Laffont et al. (1929). Encyclopédie médico-chirurgicale EMC: Ophtalmologie. Elsevier Masson SAS.Google Scholar
  27. 27.
    Ayed, H. B., Masmoudi, M. (2016). Development of an image-processing architecture of a new visual prosthesis. In IEEE 13th international multi-conference SSD (pp. 318–329).Google Scholar
  28. 28.
    Nelson, R. (2007). Visual responses of ganglion cells. In H. Kolb, E. Fernandez, R. Nelson (Eds.), Webvision: The organization of the retina and visual system. Salt Lake City, UT: University of Utah Health Sciences Center.Google Scholar
  29. 29.
    Schnapf, J. L., & Baylor, D. A. (1987). How photoreceptor cells respond to light. Scientific American, 256(4), 40–47.CrossRefGoogle Scholar
  30. 30.
    Weiland, J. D., Cho, A. K., & Humayun, M. S. (2011). Retinal prostheses: Current clinical results and future needs. Ophthalmology, 118(11), 2227–2237.CrossRefGoogle Scholar
  31. 31.
    Rothermel, et al. (2009). A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE Journal of Solid-State Circuits, 44(1), 290–300.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hanen Ben Ayed
    • 1
    Email author
  • Mohamed Ali
    • 2
    • 3
  • Sreenil Saha
    • 3
  • Mohamed Masmoudi
    • 1
  • Mohamad Sawan
    • 3
  1. 1.Electrical Engineering Department, National School of Engineering of SfaxUniversity of SfaxSoukra, SfaxTunisia
  2. 2.Microelectronics DepartmentElectronics Research InstituteCairoEgypt
  3. 3.Electrical Engineering DepartmentPolytechnique MontrealMontrealCanada

Personalised recommendations