Advertisement

A stacked transistor approach to millimeter wave SiGe power amplifiers

  • Iancu Somesanu
  • Hermann Schumacher
Article

Abstract

This paper describes a design approach for stack connected transistor amplifiers used in the realization of two highly compact SiGe:C BiCMOS amplifiers. The first, realized in a 250 nm process, is designed to operate at Ka band and occupies an area of 0.24 \({{{\mathrm {mm}}}}^2\). It is capable of delivering a saturated output power of 16.8 dBm with an output 1 dB compression point of up to 15 dBm. It achieves a small signal gain higher than 15 dB and has a measured power added efficiency of 15%. The second is realized in a 130 nm process and operates at W band. Occupying an area of only 0.02 \({{{\mathrm {mm}}}}^2\), it has a small signal gain of 14 dB with a 33 GHz 3 dB bandwidth centered around 89 GHz. It consumes 104 mW from a 5 V supply and delivers a saturated output power of 9 dBm between 92 and 102 GHz in simulation.

Keywords

Ka band Power amplifier SiGe:C BiCMOS W band SG13 SG25 

Notes

Acknowledgements

The work reported here was developed in the framework of “SKATE - A low cost BFN/RF Front End using Multi-node On Chip for Ka Band User Terminal” Project coordinated by Space Engineering S.p.A, Rome, Italy under the European Space Agency’s ARTES-5.1 program. The authors would like to thank Prof. Dr.-Ing.habil. Michael Schröter and M.tech Anindya Mukherjee from the Institute of Circuits and Systems, TU Dresden for their help with the fabrication of the W band amplifier.

References

  1. 1.
    Ezzeddine, A., & Huang, H. (2003). The high voltage high power FET (HiVP). In IEEE radio frequency integrated circuits (RFIC) symposium, 2003 (pp. 215–218).  https://doi.org/10.1109/RFIC.2003.1213929.
  2. 2.
    Farmer, T. J., Darwish, A., Huebschman, B., Viveiros, E., Hung, H. A., & Zaghloul, M. E. (2011). Millimeter-wave sige HBT high voltage/high power architecture implementation. IEEE Microwave and Wireless Components Letters, 21(10), 544–546.  https://doi.org/10.1109/LMWC.2011.2164782.CrossRefGoogle Scholar
  3. 3.
    Dabag, H. T., Hanafi, B., Golcuk, F., Agah, A., Buckwalter, J. F., & Asbeck, P. M. (2013). Analysis and design of stacked-fet millimeter-wave power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 61(4), 1543–1556.  https://doi.org/10.1109/TMTT.2013.2247698.CrossRefGoogle Scholar
  4. 4.
    Cui, J., Helmi, S., Tang, Y., & Mohammadi, S. (2016). Stacking the deck for efficiency: Rf- to millimeter-wave stacked cmos soi power amplifiers. IEEE Microwave Magazine, 17(12), 55–69.  https://doi.org/10.1109/MMM.2016.2608698.CrossRefGoogle Scholar
  5. 5.
    Somesanu, I., & Schumacher, H. (2017). A SiGe:C BiCMOS driver/balun/switch function block for a 30 GHz satcom transmit array. In 2017 IEEE 17th topical meeting on silicon monolithic integrated circuits in RF systems (SiRF) (pp. 47–49).Google Scholar
  6. 6.
    Gray, P., Hurst, P., Meyer, R., & Lewis, S. (2008). Analysis and design of analog integrated circuits, 4th edn. New York: Wiley India Pvt. Limited. https://books.google.de/books?id=LE-3tAXHF7AC. Accessed Dec 2017.
  7. 7.
    Pornpromlikit, S., Jeong, J., Presti, C. D., Scuderi, A., & Asbeck, P. M. (2010). A watt-level stacked-fet linear power amplifier in silicon-on-insulator CMOS. IEEE Transactions on Microwave Theory and Techniques, 58(1), 57–64.  https://doi.org/10.1109/TMTT.2009.2036323.CrossRefGoogle Scholar
  8. 8.
    Dinc, T., Kalyoncu, I., Kaynak, M., & Gurbuz, Y. (2012). An X-band, high performance, SiGe-HBT power amplifier for phased arrays. In 2012 7th European microwave integrated circuit conference (pp. 472–475).Google Scholar
  9. 9.
    Noh, Y. S., & Park, C. S. (2002). PCS/W-CDMA dual-band MMIC power amplifier with a newly proposed linearizing bias circuit. IEEE Journal of Solid-State Circuits, 37(9), 1096–1099.Google Scholar
  10. 10.
    Yoshimasu, T., Akagi, M., Tanba, N., & Hara, S. (1998). An HBT MMIC power amplifier with an integrated diode linearizer for low-voltage portable phone applications. IEEE Journal of Solid-State Circuits, 33(9), 1290–1296.  https://doi.org/10.1109/4.711326.CrossRefGoogle Scholar
  11. 11.
    Somesanu, I., & Schumacher, H. (2017). A highly compact, 16.8 dBm Psat Ka-band power amplifier in 250 nm SiGe:C BiCMOS. In 2017 IEEE nordic circuits and systems conference (NORCAS): NORCHIP and international symposium of system-on-chip (SoC) (pp. 1–4).  https://doi.org/10.1109/NORCHIP.2017.8124959.
  12. 12.
    Farmer, T. J., Darwish, A., Huebschman, B., Viveiros, E., Hung, H. A., & Zaghloul, M. E. (2011). Class-A stacked SiGe HBT power amplifier at millimeter-wave. In 2011 international semiconductor device research symposium (ISDRS) (pp. 1–2).  https://doi.org/10.1109/ISDRS.2011.6135274.
  13. 13.
    Heinemann, B., Barth, R., Knoll, D., Rucker, H., Tillack, B., & Winkler, W. (2006). High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches. In 2006 international SiGe technology and device meeting (pp. 1–2).Google Scholar
  14. 14.
    Rcker, H., Heinemann, B., & Fox, A. (2012). Half-terahertz SiGe BICMOS technology. In 2012 IEEE 12th topical meeting on silicon monolithic integrated circuits in RF systems (pp. 133–136).  https://doi.org/10.1109/SiRF.2012.6160164.
  15. 15.
    Chen, C., Yang, X., & Yoshimasu, T. (2016). A 30-GHz band high-efficiency class-j power amplifier IC in 120-nm SiGe HBT technology. In 2016 IEEE international symposium on radio-frequency integration technology (RFIT) (pp. 1–3).  https://doi.org/10.1109/RFIT.2016.7578122.
  16. 16.
    Essing, J., Leenaerts, D., & Mahmoudi, R. (2014). A 27 GHZ, 31 dBm power amplifier in a 0.25 \(\mu\)m SiGe:c BICMOS technology. In 2014 IEEE bipolar/BiCMOS circuits and technology meeting (BCTM) (pp. 143–146).  https://doi.org/10.1109/BCTM.2014.6981301.
  17. 17.
    Nguyen, D. P., Pham, T., Pham, B. L., & Pham, A. V. (2016). A high efficiency high power density harmonic-tuned ka band stacked-FET GAAS power amplifier. In 2016 IEEE compound semiconductor integrated circuit symposium (CSICS) (pp. 1–4).  https://doi.org/10.1109/CSICS.2016.7751020.
  18. 18.
    Song, P., Ulusoy, A.., Schmid, R. L., Zeinolabedinzadeh, S. N., & Cressler, J. D. (2014). W-band sige power amplifiers. In: 2014 IEEE bipolar/BiCMOS circuits and technology meeting (BCTM) (pp. 151–154).  https://doi.org/10.1109/BCTM.2014.6981303.
  19. 19.
    Chappidi, C. R., & Sengupta, K. (2017). A W-band sige power amplifier with PSAT of 23 dBm and PAE of 16.8. In 2017 IEEE MTT-S international microwave symposium (IMS) (pp. 1699–1702).  https://doi.org/10.1109/MWSYM.2017.8058968.
  20. 20.
    Agah, A., Jayamon, J. A., Asbeck, P. M., Larson, L. E., & Buckwalter, J. F. (2014). Multi-drive stacked-fet power amplifiers at 90 GHz in 45 nm SOI CMOS. IEEE Journal of Solid-State Circuits, 49(5), 1148–1157.  https://doi.org/10.1109/JSSC.2014.2308292.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electron Devices and CircuitsUlm UniversityUlmGermany

Personalised recommendations