Advertisement

A sub-nW neuromorphic receptors for wide-range temporal patterns of post-synaptic responses in 65 nm CMOS

  • Xuefei You
  • Amir Zjajo
  • Sumeet S. Kumar
  • Rene van Leuken
Article
  • 44 Downloads

Abstract

Synaptic dynamics is of great importance in realizing biophysically accurate neural behaviors and efficient synaptic learning in neuromorphic integrated circuits. In this paper, we propose a current-based synapse structure with multi-compartment receptors AMPA, NMDA and GABAa and a weight-dependent learning algorithm. The designed circuit offers distinctive dynamic features of receptors as well as a joint synaptic function. A cross-correlation methodology is applied to a two-layer RNN built by multi-compartment receptors to demonstrate the proposed synapse structure. An increased computation efficiency is verified through temporal synchrony detection among the neural layers in a noisy environment. The design implemented in TSMC 65 nm CMOS technology consumes 1.92, 3.36, 1.11 and 35.22 pJ per spike event of energy for AMPA, NMDA, GABAa and the advanced learning circuit, respectively.

Keywords

Neuromorphic design Synapse Receptor Synchrony detection Synaptic plasticity 

References

  1. 1.
    Mead, C. (1990). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–1636.CrossRefGoogle Scholar
  2. 2.
    Azghadi, M. R., Iannella, N., Al-Sarawi, S. F., Indiveri, G., & Abbott, D. (2014). Spike-based synaptic plasticity in silicon: Design, implementation, application, and challenges. Proceedings of the IEEE, 102(5), 717–737.CrossRefGoogle Scholar
  3. 3.
    Gaiarsa, J. L., Caillard, O., & Ben-Ari, Y. (2002). Long-term plasticity at GABAergic and glycinergic synapses: Mechanisms and functional significance. Trends in Neurosciences, 25(11), 564–570.CrossRefGoogle Scholar
  4. 4.
    Destexhe, A., Mainen, Z. F., & Sejnowski, T. J. (1998). Kinetic models of synaptic transmission. Methods in Neuronal Modeling, 2, 1–25.Google Scholar
  5. 5.
    Liao, D., Hessler, N. A., & Malinow, R. (1995). Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature, 375(6530), 400.CrossRefGoogle Scholar
  6. 6.
    Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98(6), 459–478.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bartolozzi, C., & Indiveri, G. (2007). Synaptic dynamics in analog VLSI. Neural Computation, 19(10), 2581–2603.CrossRefzbMATHGoogle Scholar
  8. 8.
    Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1), 211–221.CrossRefGoogle Scholar
  9. 9.
    Bofill-i-Petit, A., & Murray, A. F. (2004). Synchrony detection and amplification by silicon neurons with STDP synapses. IEEE Transactions on Neural Networks, 15(5), 1296–1304.CrossRefGoogle Scholar
  10. 10.
    Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., et al. (2015). A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Frontiers in Neuroscience, 9, 141.CrossRefGoogle Scholar
  11. 11.
    Noack, M., Krause, M., Mayr, C., Partzsch, J., & Schuffny, R. (2014). VLSI implementation of a conductance-based multi-synapse using switched-capacitor circuits. In 2014 IEEE international symposium on circuits and systems (ISCAS) (pp. 850–853). IEEE.Google Scholar
  12. 12.
    Rachmuth, G., & Poon, C. S. (2008). Transistor analogs of emergent iono-neuronal dynamics. HFSP Journal, 2(3), 156–166.CrossRefGoogle Scholar
  13. 13.
    You, X., Zjajo, A., Kumar, S.S., & van Leuken, R. (2017). Energy-efficient neuromorphic receptors for wide-range temporal patterns of post-synaptic responses. In Nordic circuits and systems conference (NORCAS) (pp. 1–6).Google Scholar
  14. 14.
    Platt, S. R. (2007). The role of glutamate in central nervous system health and disease—A review. The Veterinary Journal, 173(2), 278–286.CrossRefGoogle Scholar
  15. 15.
    VanDongen, A. M. (Ed.). (2008). Biology of the NMDA receptor. Boca Raton: CRC Press.Google Scholar
  16. 16.
    Wu, S. H., Ma, C. L., & Kelly, J. B. (2004). Contribution of AMPA, NMDA, and GABAA receptors to temporal pattern of postsynaptic responses in the inferior colliculus of the rat. Journal of Neuroscience, 24(19), 4625–4634.CrossRefGoogle Scholar
  17. 17.
    Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  18. 18.
    Bi, G. Q., & Poo, M. M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24(1), 139–166.CrossRefGoogle Scholar
  19. 19.
    Schutter, E. D. (2009). Computational modeling methods for neuroscientists. Cambridge: The MIT Press.CrossRefzbMATHGoogle Scholar
  20. 20.
    van Vreeswijk, C., Abbott, L. F., & Bard Ermentrout, G. (1994). When inhibition not excitation synchronizes neural ring. Journal of Computational Neuroscience, 1, 313–321.CrossRefGoogle Scholar
  21. 21.
    Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472.CrossRefGoogle Scholar
  22. 22.
    Amit, D. J., & Fusi, S. (1994). Learning in neural networks with material synapses. Neural Computation, 6(5), 957–982.CrossRefGoogle Scholar
  23. 23.
    Brunel, N., Chance, F. S., Fourcaud, N., & Abbott, L. F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86(10), 2186.CrossRefGoogle Scholar
  24. 24.
    Wang, Y., & Liu, S. C. (2011). A two-dimensional configurable active silicon dendritic neuron array. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9), 2159–2171.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Circuits and Systems GroupDelft University of TechnologyDelftThe Netherlands

Personalised recommendations