Design and analysis of a three-dimensional millimeter-wave frequency-shift based CMOS biosensor using vertically stacked spiral inductors in LC oscillators

  • Maya MatsunagaEmail author
  • Taiki Nakanishi
  • Atsuki Kobayashi
  • Kazuo Nakazato
  • Kiichi Niitsu


This paper proposes a novel millimeter-wave frequency-shift based CMOS biosensor capable of providing three-dimensional (3D) resolution. The vertical resolution from the sensor chip surface can be obtained by using vertically stacked on-chip inductors of LC oscillators in dual metal layers, which enables 3D detection of biomolecular target. The LC oscillators with spiral inductors stacked in upper and lower metal layers produce different shifts in the frequencies from the desired resonant frequency of 60 GHz due to frequency dependent complex relative permittivity of targeted bio-molecular structure. The vertical resolution of the sensor can also be improved by changing the supply voltage. The effectiveness of the proposed approach is verified by fabricating a test chip in 65 nm CMOS process. The measurement results show variation in the resonant frequency shifts due to upper and lower spiral inductors of LC oscillators which demonstrates the capability of the proposed biosensor to provide 3D resolution.


Biosensor CMOS Three-dimensional LC oscillator Millimeter wave 



This research was financially supported by JST, PRESTO (No. JPMJPR15D5), by a Grants-in-Aid for Scientific Research (S) (Nos. 20226009, 25220906, and 26220801) and a Grant-in-Aid for Young Scientists (A) (No. 16H06088) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Strategic Information and Communications R&D Promotion Programme (Nos. 121806006 and 152106004) of the Ministry of Internal Affairs and Communications, Japan, by TOYOTA RIKEN, by the Hibi Science Foundation, and by The Nitto Foundation. The fabrication of CMOS chips was supported by the VLSI Design and Education Center (VDEC), University of Tokyo in collaboration with Synopsys, Inc. and Cadence Design Systems, Inc.


  1. 1.
    Cook, D. J., Yougblood, M., Heierman, III, E. O., Gopalratnam, K., Rao, S., Litvin, A. et al. (2003). MavHome: An agent-based smart home. In Proceedings of PerCom (pp 521–524).Google Scholar
  2. 2.
    Demiris, G., Hensel, B. K., Skubic, M., & Rantz, M. (2008). Senior residents’ perceived need of and preferences for “smart home” sensor technologies. International Journal of Technology Assessment in Health Care, 24(1), 120–124.CrossRefGoogle Scholar
  3. 3.
    Du, R., Chen, C., Yang, B., Lu, N., & Shen, X. S. (2014). Effective urban traffic monitoring by vehicular sensor networks. IEEE Transactions on Vehicular Technology, 64(1), 273–286.CrossRefGoogle Scholar
  4. 4.
    Patel, P. D. (2002). (Bio)sensors for measurement of analytes implicated in food safety: A review. Trends in Analytical Chemistry, 21(2), 96–115.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Weng, X., & Neethirajan, S. (2018). Paper-based microfluidic aptasensor for food safety. Journal of Food Safety, 38(1), 1–8.CrossRefGoogle Scholar
  6. 6.
    Jegan, R., & Nimi, W. S. (2018). Sensor based smart real time monitoring of patients conditions using wireless protocol. International Journal of E-Health and Medical Communications (IJEHMC), 9(3), 79–99.CrossRefGoogle Scholar
  7. 7.
    Zhang, M., Cao, T., & Zhao, X. (2017). Applying sensor-based technology to improve construction safety management. MDPI Sensors, 17(8), 1–24.Google Scholar
  8. 8.
    Cheng, M. M.-C., Cuda, G., Bunimovich, Y. L., Gaspari, M., Heath, J. R., Hill, H. D., et al. (2006). Nanotechnologies for biomolecular detection and medical diagnostics. Current Opinion in Chemical Biology, 10(1), 11–19.CrossRefGoogle Scholar
  9. 9.
    Lim, D. V., Simpson, J. M., Kearns, E. A., & Kramer, M. F. (2005). Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews, 18(4), 583–607.CrossRefGoogle Scholar
  10. 10.
    Trout, G. J., & Kazlauskas, R. (2004). Sports drug testing—An analyst’s perspective. Chemical Society Reviews, 33, 1–13.CrossRefGoogle Scholar
  11. 11.
    Morris, D., Coyle, S., Wu, Y., Lau, K. T., Wallace, G., & Diamond, D. (2009). Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sensors and Actuators B: Chemical, 139(1), 231–236.CrossRefGoogle Scholar
  12. 12.
    G-Berger, M., Mugny, C. H., Perrenoud, D., Pannather, A., & Frenk, E. (1992). A comparative study of formaldehyde detection using chromotropic acid, acetylacetone and HPLC in cosmetics and household cleaning products. Contact Dermatitis, 26(3), 149–154.CrossRefGoogle Scholar
  13. 13.
    Kobayashi, A., Ikeda, K., Nakazato, K., & Niitsu, K. (2017). Energy-efficient and low-voltage design methodology for a supply-sensing CMOS biosensor using biofuel cells for energy-autonomous healthcare applications. Japanese Journal of Applied Physics, 56(1S), 01AH03.CrossRefGoogle Scholar
  14. 14.
    Ikeda, K., Kobayashi, A., Nakazato, K., & Niitsu, K. (2017). A scalable time-domain biosensor array using logarithmic cyclic time-attenuation-based TDC for high-resolution and large-scale bio-imaging. In ACM/IEEE Asia and South Pacific design automation conference (pp. 1S-4).Google Scholar
  15. 15.
    Kobayashi, A., Ikeda, K., Ogawa, Y., Nishizawa, M., Nakazato, K., & Niitsu, K. (2016). An energy-autonomous bio-sensing system using a biofuel cell and 0.19 V 53 μW 65 nm-CMOS integrated supply-sensing sensor with a supply-insensitive temperature sensor and inductive-coupling transmitter. In IEEE biomedical circuits and systems conference (pp. 148–151).Google Scholar
  16. 16.
    Gamo, K., Niitsu, K., & Nakazato, K. (2015). Noise-immune current-integration-based CMOS amperometric sensor platform with 1.2 μm × 2.05 μm electroless-plated microelectrode array for robust bacteria counting. In IEEE biomedical circuits and systems conference (pp. 539–542).Google Scholar
  17. 17.
    Ota, S., Niitsu, K., Kondo, H., Hori, M., & Nakazato, K. (2014). A CMOS sensor platform with 1.2 μm × 2.05 μm electroless-plated 1024 × 1024 microelectrode array for high-sensitivity rapid direct bacteria counting. In IEEE biomedical circuits and systems conference (pp. 460–463).Google Scholar
  18. 18.
    Ikeda, K., Kobayashi, A., Nakazato, K., & Niitsu, K. (2017). Design and electrochemical measurement of a current-mode analog-to-time converter with short-pulse output capability using local intra-cell activation for high-speed time-domain biosensor array. Analog Integrated Circuits and Signal Processing, 92(3), 403–413.CrossRefGoogle Scholar
  19. 19.
    Li, L., & Liu, X. (2011). CMOS Amperometric Instrumentation and Packaging for Biosensor Array Applications. IEEE Transaction on Biomedical Circuits and Systems, 5(5), 439–448.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Manickam, A., Chevalier, A., McDermott, M., Ellington, A. D., & Hassibi, A. (2010). A CMOS electrochemical impedance spectroscopy (EIS) biosensor array. IEEE Transaction on Biomedical Circuits and Systems, 4(6), 379–390.CrossRefGoogle Scholar
  21. 21.
    Gamo, K., Nakazato, K., & Niitsu, K. (2017). A current-integration-based CMOS amperometric sensor with 1.2 μm × 2.05 μm electroless-plated microelectrode array for high-sensitivity bacteria counting. In ACM/IEEE Asia and South Pacific design automation conference., pp. 1S-8.Google Scholar
  22. 22.
    Mitsunaka, T., Sato, D., Ashida, N., Saito, A., Iizuka, K., Suzuki, T., et al. (2016). CMOS biosensor IC focusing on dielectric relaxations of biological water with 120 and 60 GHz oscillator arrays. IEEE Journal of Solid-State Circuits, 51(11), 2534–2544.CrossRefGoogle Scholar
  23. 23.
    Nagata, S., Kameshiro, N., Terutsuki, D., Mitsuno, H., Sakurai, T., Niitsu, K., et al. (2018). A high-density integrated odorant sensor array system based on insect cells expressing insect odorant receptors. IEEE international conference on micro electro mechanical systems (MEMS) (pp. 282–285).Google Scholar
  24. 24.
    Wang, H., Chen, Y., Hassibi, A., Scherer, A., & Hajimiri, A. (2009). A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet. In IEEE international solid-state circuits conference (pp. 438–440).Google Scholar
  25. 25.
    Elhadidy, O., Shakib, S., Krenek, K., Palermo, S., & Entesari, K. (2015). A wide-band fully-integrated CMOS ring-oscillator PLL-based complex dielectric spectroscopy system. IEEE Transactions on Circuits and Systems, 62(8), 1940–1949.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Böttcher, C. J. F., & Bordewijk, P. (1978). Theory of electric polarization (2nd ed., Vol. II, pp. 3, 20, 42). Amsterdam: Elsevier.Google Scholar
  27. 27.
    Huang, S. M., Stott, A. L., Green, R. G., & Beck, M. S. (1988). Electronic transducers for industrial measurement of low value capacitances. Journal of Physics E: Scientific Instruments, 21(3), 242–250.CrossRefGoogle Scholar
  28. 28.
    Motoyoshi, M., & Fujishima, M. (2006). 43 μW 6 GHz CMOS divide-by-3 frequency divider based on three-phase harmonic injection locking. In IEEE Asian solid-state circuits conference (A-SSCC) (pp. 183–186).Google Scholar
  29. 29.
    Parlane, N. A., Rehm, B. H. A., Wedlock, D. N., & Buddle, B. M. (2014). Novel particulate vaccines utilizing polyester nanoparticles (bio-beads) for protection against Mycobacterium bovis infection—A review. Veterinary Immunology and Immunopathology, 158(1–2), 8–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maya Matsunaga
    • 1
    Email author
  • Taiki Nakanishi
    • 1
  • Atsuki Kobayashi
    • 1
  • Kazuo Nakazato
    • 1
  • Kiichi Niitsu
    • 1
    • 2
  1. 1.Department of Electronics, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.PRESTO, JSTSaitamaJapan

Personalised recommendations