Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 97, Issue 3, pp 483–492 | Cite as

A low-power high-performance digital predistorter for wideband power amplifiers

  • Venkata Narasimha ManyamEmail author
  • Dang-Kièn Germain Pham
  • Chadi Jabbour
  • Patricia Desgreys
Article
  • 95 Downloads

Abstract

In this paper, we present a low-power high-performance digital predistorter (DPD) for the linearization of wideband RF power amplifiers (PAs). It is based on the novel FIR memory polynomial (FIR-MP) predistorter model, which significantly augments the performance of the conventional memory polynomial predistorter with the use of complex baseband digital FIR filter prior to the memory polynomial. The adjacent channel leakage ratio (ACLR) performance comparison between the conventional MP and the proposed FIR-MP is done based on simulations with multi-carrier modulated signals of 20 and 80 MHz bandwidths. The PA models used for the simulations are extracted from the measurements of a commercial \(1\,\hbox {W}\) GaAs HBT PA. At the ideal system-level simulations, the improvements in ACLR over the conventional MP are 7.2  and 15.6 dB, respectively, for 20 and 80 MHz signals. The choice of selection of various parameters of the predistorter along with the subsequent digital-to-analog converter (DAC) is presented. The impact of fixed-point representation is assessed using ACLR metrics, which shows that a wordlength of 14 bits is sufficient to obtain ACLR beyond \(45\,\hbox {dBc}\) with a margin of \(10\,\hbox {dB}\). The proposed predistorter is synthesized in \(28\,\hbox {nm}\) fully-depleted silicon-on-insulator (FDSOI) CMOS process. It is shown that with a fraction of the power and die area of that of the MP a huge improvement in ACLR is attained. With an overall power consumption of 8.2 and 88.8 mW, respectively, for 20 and 80 MHz signals, the FIR-MP DPD proves to be a suitable candidate for small-cell base station PA linearization.

Keywords

Digital predistortion (DPD) Memory polynomial (MP) Power amplifier (PA) Wideband Small-cell base stations Digital implementation 

Notes

Acknowledgements

This work is supported by the “Lidex-Nanodesign” project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. The authors would like to thank Prof. Yves Mathieu and Dr. Tarik Graba for their valuable discussions.

References

  1. 1.
    3GPP. (2017). 3GPP specification: LTE Evolved Universal Terrestrial Radio Access (E-UTRA) ; Base Station(BS) radio transmission and reception (3GPP TS 36.104 version 15.0.0 Release 15). http://www.3gpp.org/dynareport/36104.htm.
  2. 2.
    Desgreys, P., Manyam, V.N., Tchambake, K., Pham, D.K.G., & Jabbour, C. (2017). Wideband power amplifier predistortion: Trends, challenges and solutions. In 2017 IEEE 12th international conference on ASIC (ASICON) (pp. 100–103).  https://doi.org/10.1109/ASICON.2017.8252421.
  3. 3.
    Ding, L., Ma, Z., Morgan, D. R., Zierdt, M., & Pastalan, J. (2006). A least-squares/Newton method for digital predistortion of wideband signals. IEEE Transactions on Communications, 54(5), 833–840.  https://doi.org/10.1109/TCOMM.2006.873996.CrossRefGoogle Scholar
  4. 4.
    Ding, L., Zhou, G., Morgan, D., Ma, Z., Kenney, J., Kim, J., et al. (2004). A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 52(1), 159–165.  https://doi.org/10.1109/TCOMM.2003.822188.CrossRefGoogle Scholar
  5. 5.
    Ghannouchi, F., & Hammi, O. (2009). Behavioral modeling and predistortion. IEEE Microwave Magazine, 10(7), 52–64.  https://doi.org/10.1109/MMM.2009.934516.CrossRefGoogle Scholar
  6. 6.
    Gotthans, T., Baudoin, G., & Mbaye, A. (2013). Optimal order estimation for modeling and predistortion of power amplifiers. In 2013 IEEE international conference on microwaves, communications, antennas and electronic systems (COMCAS 2013) (pp. 1–4).  https://doi.org/10.1109/COMCAS.2013.6685279.
  7. 7.
    Guan, L., Kearney, R., Yu, C., & Zhu, A. (2013). High-performance digital predistortion test platform development for wideband RF power amplifiers. International Journal of Microwave and Wireless Technologies, 5(02), 149–162.  https://doi.org/10.1017/S1759078713000184.CrossRefGoogle Scholar
  8. 8.
    Guan, L., & Zhu, A. (2010). Low-cost FPGA implementation of volterra series-based digital predistorter for rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 58(4), 866–872.  https://doi.org/10.1109/TMTT.2010.2041588.CrossRefGoogle Scholar
  9. 9.
    Guan, L., & Zhu, A. (2014). Green communications: Digital predistortion for wideband rf power amplifiers. IEEE Microwave Magazine, 15(7), 84–99.  https://doi.org/10.1109/MMM.2014.2356037.CrossRefGoogle Scholar
  10. 10.
    Huang, H., Xia, J., Islam, A., Ng, E., Levine, P. M., & Boumaiza, S. (2015). Digitally assisted analog/RF predistorter with a small-signal-assisted parameter identification algorithm. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4297–4305.  https://doi.org/10.1109/TMTT.2015.2495362.CrossRefGoogle Scholar
  11. 11.
    Jiang, T., Quaglia, R., Camarchia, V., & Pirola, M. (2014). FPGA-based digital predistortion of A 3.5 GHz GaN Doherty power amplifier. In 10th international conference on wireless communications, networking and mobile computing (WiCOM 2014) (pp. 20–24).  https://doi.org/10.1049/ic.2014.0065.
  12. 12.
    Kim, J., & Konstantinou, K. (2001). Digital predistortion of wideband signals based on power amplifier model with memory. Electronics Letters, 37(23), 1417–1418.  https://doi.org/10.1049/el:20010940.CrossRefGoogle Scholar
  13. 13.
    Ku, H., & Kenney, J. S. (2003). Behavioral modeling of nonlinear RF power amplifiers considering memory effects. IEEE Transactions on Microwave Theory and Techniques, 51(12), 2495–2504.  https://doi.org/10.1109/TMTT.2003.820155.CrossRefGoogle Scholar
  14. 14.
    Lin, W. T., Huang, H. Y., & Kuo, T. H. (2014). A 12-bit 40 nm DAC Achieving SFDR \(>\) 70 dB at 1.6 GS/s and IMD \(<\) –61dB at 2.8 GS/s with DEMDRZ technique. IEEE Journal of Solid-State Circuits, 49(3), 708–717.  https://doi.org/10.1109/JSSC.2014.2301769.CrossRefGoogle Scholar
  15. 15.
    Manyam, V.N., Pham, D.K.G., Jabbour, C., & Desgreys, P. (2017). An FIR memory polynomial predistorter for wideband RF power amplifiers. In 2017 15th IEEE international new circuits and systems conference (NEWCAS) (pp. 249–252).  https://doi.org/10.1109/NEWCAS.2017.8010152.
  16. 16.
    Manyam, V.N., Pham, D.K.G., Jabbour, C., & Desgreys, P. (2018). A wideband mixed-signal predistorter for small-cell base station power amplifiers. In 2018 IEEE international symposium on circuits and systems (ISCAS).Google Scholar
  17. 17.
    Mayer, C., McLaurin, D., Fan, J., Bal, S., Angell, C., Gysel, O., McCormick, M., Manglani, M., Schubert, R., Reggiannini, B., Kornblum, J., Wu, L., Leonard, L., Bhal, S., Kagan, A., & Montalvo, T. (2016). A direct-conversion transmitter for small-cell cellular base stations with integrated digital predistortion in 65nm CMOS. In 2016 IEEE radio frequency integrated circuits symposium (RFIC) (pp. 63–66).  https://doi.org/10.1109/RFIC.2016.7508251.
  18. 18.
    Messaoudi, N., Fares, M.C., Boumaiza, S., & Wood, J. (2008). Complexity reduced odd-order memory polynomial pre-distorter for 400-watt multi-carrier Doherty amplifier linearization. In 2008 IEEE MTT-S international microwave symposium digest (pp. 419–422).  https://doi.org/10.1109/MWSYM.2008.4633192.
  19. 19.
    Morgan, D., Ma, Z., Kim, J., Zierdt, M., & Pastalan, J. (2006). A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 54(10), 3852–3860.  https://doi.org/10.1109/TSP.2006.879264.CrossRefzbMATHGoogle Scholar
  20. 20.
    Roger, F. (2013). A 200mW 100MHz-to-4GHz 11th-order complex analog memory polynomial predistorter for wireless infrastructure RF amplifiers. In Solid-state circuits conference digest of technical papers (ISSCC), 2013 IEEE international (pp. 94–95).  https://doi.org/10.1109/ISSCC.2013.6487652.
  21. 21.
    Westesson, E., & Sundstrom, L. (1999). A complex polynomial predistorter chip in CMOS for baseband or IF linearization of RF power amplifiers. In Proceedings of the 1999 IEEE international symposium on circuits and systems, 1999. ISCAS ’99 (vol. 1, pp. 206–209).  https://doi.org/10.1109/ISCAS.1999.777839.
  22. 22.
    Westesson, E., & Sundstrom, L. (2001). Low-power complex polynomial predistorter circuit in CMOS for RF power amplifier linearization. In Solid-state circuits conference, 2001. ESSCIRC 2001. In Proceedings of the 27th European (pp. 486–489).Google Scholar
  23. 23.
    Wood, J. (2017). System-level design considerations for digital pre-distortion of wireless base station transmitters. IEEE Transactions on Microwave Theory and Techniques, 65(5), 1880–1890.  https://doi.org/10.1109/TMTT.2017.2659738.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LTCI, Télécom ParisTechUniversité Paris-SaclayParisFrance

Personalised recommendations