Time-dependent dielectric breakdown (TDDB) reliability analysis of CMOS analog and radio frequency (RF) circuits

  • Mustafa Tarık Saniç
  • Mustafa Berke Yelten


In this paper, a methodology to analyze the time dependent dielectric breakdown (TDDB) reliability of CMOS analog and radio frequency (RF) circuits has been proposed and applied to common circuit building blocks, including an operational amplifier, a RF mixer, and a comparator. The analysis includes both finding the transistors in the circuit topology that are the most sensitive to TDDB degradation, as well as, observing the trends of TDDB degradation over a series of nanoscale process technologies for each building block. Analysis outcomes suggest that the TDDB degradation resilience goes up for operational amplifiers and comparators whereas it decreases for RF mixers as the device channel lengths come down. The trends have been explained on the basis of the circuit block topology and device physics.


Time-dependent dielectric breakdown TDDB Analog circuits RF circuits Reliability analysis 


  1. 1.
    Ker, M. D., & Chen, J. S. (2008). Impact of mosfet gate-oxide reliability on cmos operational amplifier in a 130-nm low-voltage process. IEEE Transactions on Device and Materials Reliability, 8(2), 394.CrossRefGoogle Scholar
  2. 2.
    Fang, J., & Sapatnekar, S. S. (2012). Scalable methods for analyzing the circuit failure probability due to gate oxide breakdown. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(11), 1960.CrossRefGoogle Scholar
  3. 3.
    Chen, J. S., & Ker, M. D. (2006). In 13th International symposium on the physical and failure analysis of integrated circuits, 2006 (pp. 45–48). IEEE.Google Scholar
  4. 4.
    Yang, K., & Milor, L. (2015). In 2015 20th international mixed-signal testing workshop (IMSTW) (pp. 1–6). IEEE.Google Scholar
  5. 5.
    Avellan, A., & Krautschneider, W. H. (2004). Impact of soft and hard breakdown on analog and digital circuits. IEEE Transactions on Device and Materials Reliability, 4(4), 676. Scholar
  6. 6.
    Fernandez, R., Martin-Martinez, J., Rodriguez, R., Nafria, M., & Aymerich, X. H. (2008). Gate oxide wear-out and breakdown effects on the performance of analog and digital circuits. IEEE Transactions on Electron Devices, 55(4), 997. Scholar
  7. 7.
    Li, Q., Li, W., Zhang, J., & Yuan, J. S. (2002). In 2002 IEEE radio frequency integrated circuits (RFIC) symposium. Digest of papers (Cat. No.02CH37280) (pp. 399–402).
  8. 8.
    Yang, H., Yuan, J. S., Liu, Y., & Xiao, E. (2003). Effect of gate-oxide breakdown on RF performance. IEEE Transactions on Device and Materials Reliability, 3(3), 93. Scholar
  9. 9.
    Yang, K., & Milor, L. (2015). In 2015 IEEE 20th international mixed-signals testing workshop (IMSTW) (pp. 1–6).
  10. 10.
    Chen, J. S., & Ker, M. D. (2007). The impact of gate-oxide breakdown on common-source amplifiers with diode-connected active load in low-voltage cmos processes. IEEE Transactions on Electron Devices, 54(11), 2860. Scholar
  11. 11.
    Kutty, K., Yuan, J. S., & Chen, S. (2011). Evaluation of gate oxide breakdown effect on cascode class e power amplifier performance. Microelectronics Reliability, 51(8), 1302.CrossRefGoogle Scholar
  12. 12.
    Saniç, M. T., & Yelten, M. B. (2017). In 2017 10th international conference on electrical and electronics engineering (ELECO) (pp. 476–480)Google Scholar
  13. 13.
    Bernstein, J. B., Gurfinkel, M., Li, X., Walters, J., Shapira, Y., & Talmor, M. (2006). Electronic circuit reliability modeling. Microelectronics Reliability, 46(12), 1957.CrossRefGoogle Scholar
  14. 14.
    Yelten, M. B., Franzon, P. D., & Steer, M. B. (2011). Surrogate-model-based analysis of analog circuits—Part ii: Reliability analysis. IEEE Transactions on Device and Materials Reliability, 11(3), 466. Scholar
  15. 15.
    Wu, E. Y., Vayshenker, A., Nowak, E., Sune, J., Vollertsen, R. P., Lai, W., et al. (2002). Experimental evidence of t/sub bd/power-law for voltage dependence of oxide breakdown in ultrathin gate oxides. IEEE Transactions on Electron Devices, 49(12), 2244.CrossRefGoogle Scholar
  16. 16.
    He, M., & Lu, T. M. (2012). Metal-dielectric interfaces in gigascale electronics: Thermal and electrical stability (Vol. 157). Berlin: Springer.Google Scholar
  17. 17.
    Gonella, R. (2001). Key reliability issues for copper integration in damascene architecture. Microelectronic Engineering, 55(1), 245.CrossRefGoogle Scholar
  18. 18.
    McPherson, J. (2012). Time dependent dielectric breakdown physics-models revisited. Microelectronics Reliability, 52(9), 1753.CrossRefGoogle Scholar
  19. 19.
    Linder, B. P., Lombardo, S., Stathis, J. H., Vayshenker, A., & Frank, D. J. (2002). Voltage dependence of hard breakdown growth and the reliability implication in thin dielectrics. IEEE Electron Device Letters, 23(11), 661.CrossRefGoogle Scholar
  20. 20.
    Degraeve, R., Kaczer, B., De Keersgieter, A., & Groeseneken, G. (2001). Relation between breakdown mode and location in short-channel nmosfets and its impact on reliability specifications. IEEE Transactions on Device and Materials Reliability, 1(3), 163.CrossRefGoogle Scholar
  21. 21.
    Cao, Y. (2006). Predictive technology models. Accessed September 3, 2017.
  22. 22.
    Hicks, J., Bergstrom, D., Hattendorf, M., Jopling, J., Maiz, J., Pae, S., et al. (2008). 45nm transistor reliability. Intel Technology Journal, 12(2), 1–16.Google Scholar
  23. 23.
    Pae, S., Ashok, A., Choi, J., Ghani, T., He, J., Lee, S. H., et al. (2010). In 2010 IEEE international reliability physics symposium (IRPS) (pp. 287–292). IEEE.Google Scholar
  24. 24.
    Ramey, S., Ashutosh, A., Auth, C., Clifford, J., Hattendorf, M., Hicks, J., et al. (2013). In 2013 IEEE internationalreliability physics symposium (IRPS) (pp. 4C–5). IEEE.Google Scholar
  25. 25.
    Novak, S., Parker, C., Becher, D., Liu, M., Agostinelli, M., Chahal, M., et al. (2015). In 2015 IEEE international reliability physics symposium (pp. 2F.2.1–2F.2.5).
  26. 26.
    Razavi, B. (2012). RF microelectronics (international edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) (2nd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronics and Communications Engineering DepartmentIstanbul Technical Universityİstanbul Turkey

Personalised recommendations