Design of a constant-bandwidth variable-gain amplifier for LTE receivers

  • Ali Dogus GungorduEmail author
  • Nil Tarim


In this study, a constant-bandwidth variable-gain amplifier (VGA) is presented for long-term evolution (LTE) receivers. The presented VGA’s description is given with a newly proposed exponential-current generator, and also the common-mode feedback and the DC-offset cancellation (DCOC) circuits. The proposed exponential current generator is based on the Taylor series approximation in such a way that it can be expanded to meet the required gain control range. The simulations are performed using the TSMC 180 nm process technology with Cadence Analog Virtuoso. The VGA has a 45 dB gain control range, 180 MHz bandwidth, 15.7 dB m the third-order input-intercept point for minimum gain and below 20 dB noise figure for maximum gain which makes it convenient for LTE receivers. The simulations also show that the bandwidth of the VGA is fairly constant over the control range. Monte Carlo simulations reveal that by using a DCOC circuit, the VGA provides 30 dB output offset rejection. The overall power consumption of the circuit is 9.1 mW under a 1.8 V power supply.


LTE receiver VGA dB linear CMFB DCOC 


  1. 1.
    Chen, Z., Zheng, Y., Choong, F. C., & Je, M. (2012). A low-power variable-gain amplifier with improved linearity: Analysis and design. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(10), 2176–2185.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hsu, C. C., & Wu, J. T. (2003). A highly linear 125-MHz CMOS switched-resistor programmable-gain amplifier. IEEE Journal of Solid-State Circuits, 38(10), 1663–1670.CrossRefGoogle Scholar
  3. 3.
    Wu, C. P., & Tsao, H. W. (2005). A 110-MHz 84-dB CMOS programmable gain amplifier with integrated RSSI function. IEEE Journal of Solid-State Circuits, 40(6), 1249–1258.CrossRefGoogle Scholar
  4. 4.
    Van Helleputte, N., & Gielen, G. (2009). A 70 pJ/pulse analog front-end in 130 nm CMOS for UWB impulse radio receivers. IEEE Journal of Solid-State Circuits, 44(7), 1862–1871.CrossRefGoogle Scholar
  5. 5.
    Kang, S. Y., Jang, J., Oh, I. Y., & Park, C. S. (2010). A 2.16 mW low power digitally-controlled variable gain amplifier. IEEE Microwave and Wireless Components Letters, 20(3), 172–174.CrossRefGoogle Scholar
  6. 6.
    Jeon, O., Fox, R. M., & Myers, B. A. (2006). Analog AGC circuitry for a CMOS WLAN receiver. IEEE Journal of Solid-State Circuits, 41(10), 2291–2300.CrossRefGoogle Scholar
  7. 7.
    Khoury, J. M. (1998). On the design of constant settling time AGC circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 45(3), 283–294.CrossRefGoogle Scholar
  8. 8.
    Onet, R., Neag, M., Kovacs, I., Topa, M. D., Rodriguez, S., & Rusu, A. (2014). Compact variable gain amplifier for a multistandard WLAN/WiMAX/LTE receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(1), 247–257.CrossRefGoogle Scholar
  9. 9.
    Duong, Q. H., Le, Q., Kim, C. W., & Lee, S. G. (2006). A 95-dB linear low-power variable gain amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(8), 1648–1657.CrossRefGoogle Scholar
  10. 10.
    Arthansiri, T., & Kasemsuwan, V. (2006). Current-mode pseudo-exponential-control variable-gain amplifier using fourth-order Taylor’s series approximation. Electronics Letters, 42(7), 379–380.CrossRefGoogle Scholar
  11. 11.
    Thanachayanont, A., & Naktongkul, P. (2005). Low-voltage wideband compact CMOS variable gain amplifier. Electronics Letters, 41(2), 51–52.CrossRefGoogle Scholar
  12. 12.
    Lee, H. D., Lee, K. A., & Hong, S. (2006). Wideband VGAs using a CMOS transconductor in triode region. In 2006 36th European microwave conference (pp. 1449–1452). IEEE.Google Scholar
  13. 13.
    Liu, H., Zhu, X., Boon, C. C., & He, X. (2015). Cell-based variable-gain amplifiers with accurate dB-linear characteristic in 0.18 µm CMOS technology. IEEE Journal of Solid-State Circuits, 50(2), 586–596.CrossRefGoogle Scholar
  14. 14.
    3GPP TR 25.913, V8.0.0 (2008, December). Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN).
  15. 15.
    Razavi, B., & Behzad, R. (1998). RF microelectronics (Vol. 2). New Jersey: Prentice Hall.Google Scholar
  16. 16.
    Friis, H. T. (1944). Noise figures of radio receivers. Proceedings of the IRE, 32(7), 419–422.CrossRefGoogle Scholar
  17. 17.
    Costa, Arthur Liraneto, Torres, Hamilton Klimach, & Bampi, Sergio. (2015). High linearity 24 db gain wideband inductorless balun low-noise amplifier for ieee 802.22 band. Analog Integrated Circuits and Signal Processing, 83(2), 187–194.CrossRefGoogle Scholar
  18. 18.
    Mi, Tian, et al. (2015). Design of a novel CMOS Gilbert mixer with high performance. Analog Integrated Circuits and Signal Processing, 82(3), 683–689.CrossRefGoogle Scholar
  19. 19.
    Vinay, M. M., Paily, R., & Mahanta, A. (2013). Gain, NF and IIP3 budgeting of LTE receiver front end. In 2013 26th international conference on VLSI design and 2013 12th international conference on embedded systems (VLSID) (pp. 191–196). IEEE.Google Scholar
  20. 20.
    Güngördü, A. D., & Tarim, N. (2017, November). A novel CMOS constant-bandwidth variable-gain amplifier for WiMAX receivers. In 2017 10th international conference on electrical and electronics engineering (ELECO) (pp. 481–484). IEEE.Google Scholar
  21. 21.
    Charlon, O., & Redman-White, W. (2004). Ultra high-compliance CMOS current mirrors for low voltage charge pumps and references. In 2004 Proceeding of the 30th European solid-state circuits conference, ESSCIRC 2004 (pp. 227–230). IEEE.Google Scholar
  22. 22.
    Razavi, B. (2001). Design of analog CMOS integrated circuits. New York: McGraw-Hill Education.Google Scholar
  23. 23.
    Sansen, W. M. (2007). Analog design essentials (Vol. 859). Berlin: Springer.Google Scholar
  24. 24.
    Phan, A. T., Kim, C. W., Jung, M. S., Shim, Y. A., Kim, J. Y., & Lee, S. G. (2005). A novel 1.5 V DC offset cancellation CMOS down conversion mixer. In 2005 IEEE international symposium on circuits and systems, ISCAS 2005 (pp. 3704–3707). IEEE.Google Scholar
  25. 25.
    Bult, K., & Wallinga, H. (1987). A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation. IEEE Journal of Solid-State Circuits, 22(3), 357–365.CrossRefGoogle Scholar
  26. 26.
    Lopez-Martin, A. J., Ramirez-Angulo, J., Chintham, R., & Carvajal, R. G. (2007). Class AB CMOS analogue squarer circuit. Electronics Letters, 43(20), 1059–1060.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations