Advertisement

A new current mode CMOS variable gain amplifier using a new pseudo-exponential function

  • M. Sait Altuner
  • Metin Yazgi
  • Ali Zeki
  • Hadi G. Momen
  • Ali Toker
Article
  • 114 Downloads

Abstract

In this paper, a new pseudo-exponential function is described and a new CMOS exponential-control variable gain amplifier (VGA) based on the new function is introduced. No multiplier is needed in the proposed approach. The VGA operates in current mode and includes two different stages. The first stage is a simple current amplifier while the second stage is an attenuator. The overall behavior of the stages gives the new pseudo-exponential function. The VGA circuit has been designed and simulated for a 0.18 μ CMOS process. Post layout results show that the circuit has a bandwidth of 164 MHz and a gain range of 32.5 dB between − 21 and + 11.5 dB.

Keywords

Variable gain amplifier Pseudo-exponential gain amplifier Current mode 

References

  1. 1.
    Harjani, R. (1995). A low-power CMOS VGA for 50-Mb/s disk drive read channels. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 42(6), 370–376.CrossRefGoogle Scholar
  2. 2.
    Motamed, A., Hwang, C., & Ismail, M. (1998). A low voltage low power wide range CMOS VGA. IEEE Transactions on Circuits and Systems II, 45, 800–811.CrossRefGoogle Scholar
  3. 3.
    Green, M., & Joshi, S. (2000). A 1.5 V CMOS VGA based on pseudo-differential structures. In IEEE international symposium on circuits and systems, Geneva, Switzerland (pp. 441–446).Google Scholar
  4. 4.
    Elwan, H. O., & Ismail, M. (2000). Digitally programmable decibel-linear CMOS VGA for low-power mixed-signal applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(5), 388–398.CrossRefGoogle Scholar
  5. 5.
    Abdelfattah, K. M., & Soliman, A. M. (2002). A new approach to realize variable gain amplifiers. Analog Integrated Circuits and Signal Processing, 30, 257–263.CrossRefGoogle Scholar
  6. 6.
    Saito, R., Hosoda, K., Hyoqo, A., Maruyama, T., Komuraki, H., Sato, H., & Sekine, K. (2003). A 1.8-V 73-dB dynamic-range CMOS variable gain amplifier. In Proceedings of the 29th European solid state conference 2003, ESSCIRC’03 (pp. 301–304).Google Scholar
  7. 7.
    Kwon, J. K., Kim, K. D., Song, W. C., & Cho, G. H. (2003). Wideband high dynamic range CMOS variable gain amplifier for low voltage and low power wireless applications. Electronics Letters, 39(10), 759–760.CrossRefGoogle Scholar
  8. 8.
    Liu, W., Liu, S.-I., & Wei, S.-K. (2004). CMOS exponential-control variable gain amplifiers. IEE Proceedings-Circuits, Devices and Systems, 151(2), 83–86.CrossRefGoogle Scholar
  9. 9.
    Liu, W., & Liu, S.-I. (2004). Low voltage and low power CMOS exponential-control variable gain amplifiers. IEICE Transactions on Fundamentals, E87(4), 952–954.Google Scholar
  10. 10.
    Cha, S., Hirose, T., Haruoka, M., Matsuoka, T., & Taniguchi, K. (2005). ACMOS IF variable gain amplifier with exponential gain control. IEICE Transactions on Fundamentals, E88(2), 410–414.CrossRefGoogle Scholar
  11. 11.
    Lee, H. D., Lee, K. A., & Hong, S. (2007). A wideband CMOS variable gain amplifier with an exponential gain control. IEEE Transactions on Microwave Theory and Techniques, 55(6), 1363–1373.CrossRefGoogle Scholar
  12. 12.
    Li, J. J., Huang, F., Hu, X., & Tang, X. (2010). A 1 GHz, 68 dB CMOS variable gain amplifier with an exponential-function circuit. In Proceedings of international symposium on signals, systems and electronics (ISSSE2010), Nanjing China.Google Scholar
  13. 13.
    Liu, H., Zhu, X., Bon, C. C., & He, X. (2015). Cell-based variable-gain amplifiers with accurate dB-linear characteristic in 0.18 μm CMOS technology. IEEE Journal of Solid State Circuits, 50(2), 586–596.CrossRefGoogle Scholar
  14. 14.
    Ma, R., Liu, M., Zheng, H., & Zhu, Z. (2018). A 77-dB dynamic range low-power variable-gain transimpedance amplifier for linear LADAR. IEEE Transactions on Circuit and Systems-II: Express Briefs, 65(2), 171–175.CrossRefGoogle Scholar
  15. 15.
    Altuner, M. S., Momen, H. G., Yazgi, M., Toker, A., & Zeki, A. (2017). A linear-in-dB control variable gain amplifier using a new approach. In Proceedings of international conference on electrical and electronics engineering (ELECO 2017), Bursa Turkey.Google Scholar
  16. 16.
    Wang, Z. (2007). 2-MOSFET transresistor with extremely low distortion for output reaching supply voltages. Electronics Letters, 26(13), 951–952.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Sait Altuner
    • 1
  • Metin Yazgi
    • 1
  • Ali Zeki
    • 2
  • Hadi G. Momen
    • 1
  • Ali Toker
    • 1
  1. 1.Department of Electronics and Communication Engineering, Faculty of Electrical and Electronics EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.Department of Electrical and Electronics EngineeringGirne American University, University DriveGirne, MersinTurkey

Personalised recommendations