Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 97, Issue 3, pp 405–415 | Cite as

Design of a fA wide dynamic range ADC for current sensing

  • Evgenia VoulgariEmail author
  • Matthew Noy
  • Francis Anghinolfi
  • François Krummenacher
  • Maher Kayal
Article
  • 311 Downloads

Abstract

Current sensing is important in various applications. The Utopia 2 Application Specific Integrated Circuit (ASIC) was developed in AMS 0.35 \(\upmu \hbox {m}\) technology for radiation monitoring based on ionization chambers. The ASIC is able to measure current equal to 1 femtoampere (fA) after active leakage current compensation. The compensation is achieved with a second dummy compensating channel that is matched to the measuring channel. The ASIC was also designed to cope with input currents that span over nine decades of dynamic range. The analog to digital conversion is performed with charge balancing and counting. The maximum current that is equal to 5 \(\upmu \hbox {A}\) can be measured after the introduction of a second range. The system has been characterized at a certified laboratory and is able to sense currents from 1 fA up to 5 \(\upmu \hbox {A}\).

Keywords

Femtoampere digitizer Current-to-frequency conversion Current readout circuit Leakage current Femtoampere current measurements Current sensing 

Notes

Acknowledgements

The authors would like to thank the Occupational Health and Safety and Environmental Protection (HSE) Unit of CERN for the financial support in this project and for the fruitful discussions during the development of the system.

References

  1. 1.
    Gottschalk, B. (1983). Charge-balancing current integrator with large dynamic range. Nuclear Instruments and Methods in Physics Research, 207(3), 417–421. ISSN 0167-5087.CrossRefGoogle Scholar
  2. 2.
    Knoll, G. F. (2010). Radiation detection and measurement. Hoboken: Wiley.Google Scholar
  3. 3.
    Voulgari, E., Noy, M., Anghinolfi, F., Perrin, D., Krummenacher, F., & Kayal, M. (2016). A front-end ASIC for ionising radiation monitoring with femto-amp capabilities. Journal of Instrumentation, 11(02), C02071.CrossRefGoogle Scholar
  4. 4.
    Forkel-Wirth, D., Roesler, S., Silari, M., Streit-Bianchi, M., Theis, C., Vincke, H., et al. (2013). Radiation protection at CERN. arXiv preprint arXiv:1303.6519.
  5. 5.
    Segura Millan, G., Perrin, D., & Scibile, L. (2005). RAMSES: the LHC radiation monitoring system for the environment and safety. In Proceedings of 10th ICALEPS international conference on accelerator and large experimental physics control systems.Google Scholar
  6. 6.
    Gore, A., Chakrabartty, S., Pal, S., & Alocilja, E. C. (2006). A multichannel femtoampere-sensitivity potentiostat array for biosensing applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(11), 2357–2363.CrossRefGoogle Scholar
  7. 7.
    Li, H., Liu, X., Li, L., Mu, X., Genov, R., & Mason, A. J. (2016). CMOS electrochemical instrumentation for biosensor microsystems: A review. Sensors, 17(1), 74.CrossRefGoogle Scholar
  8. 8.
    Manickam, A., Singh, R., McDermott, M. W., Wood, N., Bolouki, S., Naraghi-Arani, P., et al. (2017). A fully integrated CMOS fluorescence biochip for DNA and RNA testing. IEEE Journal of Solid State Circuits, 52(11), 2857–2870.CrossRefGoogle Scholar
  9. 9.
    Qiao, N., & Indiveri, G. (2016). An auto-scaling wide dynamic range current to frequency converter for real-time monitoring of signals in neuromorphic systems. In Biomedical circuits and systems conference (BioCAS), 2016 IEEE (pp. 160–163).Google Scholar
  10. 10.
    Venturini, G., Anghinolfi, F., Dehning, B., Krummenacher, F., & Kayal, M. (2013). A 120 dB dynamic-range radiation-tolerant charge-to-digital converter for radiation monitoring. Microelectronics Journal, 44(12), 1302–1308.CrossRefGoogle Scholar
  11. 11.
    Mazza, G., Cirio, R., Donetti, M., La Rosa, A., Luparia, A., Marchetto, F., et al. (2005). A 64-channel wide dynamic range charge measurement ASIC for strip and pixel ionization detectors. IEEE Transactions on Nuclear Science, 52(4), 847–853.CrossRefGoogle Scholar
  12. 12.
    Fausti, F., Mazza, G., Attili, A., Fadavi Mazinani, M., Giordanengo, S., Lavagno, M., et al. (2017). Design and characterization of a 64 channels ASIC front-end electronics for high-flux particle beam detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment., 867, 1–6.CrossRefGoogle Scholar
  13. 13.
    Voulgari, E., Noy, M., Anghinolfi, F., Krummenacher, F., & Kayal, M. (2015). Design and measurement methodology for a sub-picoampere current digitiser. In 2015 22nd International conference on mixed design of integrated circuits and systems (MIXDES) (pp. 525–529).Google Scholar
  14. 14.
    Voulgari, E., Noy, M., Anghinolfi, F., Krummenacher, F., & Kayal, M. (2015). Sub-picoampere, 7-decade current to frequency converter for current sensing. In New Circuits and Systems Conference (NEWCAS), 2015 IEEE 13th International (pp. 1-4).Google Scholar
  15. 15.
    Voulgari, E. (2017). A nine decade femtoampere current to frequency converter (Ph.D. dissertation, EPFL, CERN).Google Scholar
  16. 16.
    Voulgari, E., Noy, M., Anghinolfi, F., Perrin, D., Krummenacher, F. & Kayal, M. (2017). A 9-decade current to frequency converter with active leakage compensation. In 2017 15th IEEE international new circuits and systems conference (NEWCAS) (pp. 345–348). IEEE.Google Scholar
  17. 17.
    Enz, C., Krummenacher, F., & Vittoz, E. (1995). An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integrated Circuits and Signal Processing, 8(11), 83–114.CrossRefGoogle Scholar
  18. 18.
    Voulgari, E., Noy, M., Anghinolfi, F., Perrin, D., Krummenacher, F., & Kayal, M. (2017). Characterization of a 9-Decade Femtoampere ASIC for radiation monitoring. In Topical workshop on electronics for particle physics (TWEPP), 2017, POS (Vol. 11, p. 14).Google Scholar
  19. 19.
    Mortara, A., Jeckelmann, B., Hurni, A., & Probst, P. A. (2007). Accurate sub-picoampere source used to calibrate electrometers. 13e Congrès International de Métrologie.Google Scholar
  20. 20.
    Tektronix, Keithley 6430, Sub-femtoamp Remote SourceMeter, Instruction Manual Rev. D.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronics LaboratoryÉcole Polytechnique Fédérale de Lausanne, EPFLLausanneSwitzerland
  2. 2.EP-ESE-FEEuropean Organization for Nuclear Research, CERNGenevaSwitzerland

Personalised recommendations