A wide-band noise-cancelling direct-conversion balun-LNA-mixer front-end

  • Hamid Karrari
  • Esmaeil Najafi Aghdam
  • Hassan Faraji Baghtash
Article
  • 16 Downloads

Abstract

A wide-band noise-cancelling balun-LNA-mixer front-end for direct conversion receivers is presented in this paper. The proposed circuit exploits an on-chip noise cancelling balun-LNA to achieve low noise figure. This paper presents a novel technique to reduce the noise of the auxiliary amplifier which, in the conventional noise cancelling circuits, is designed to cancel out the noise of the main amplifier. The proposed front-end is designed and simulated in TSMC 0.18 µm RF technology. Simulation results with Spectre, show the high conversion gain of 25.7–28.9 dB and low noise figure of 3.3–3.9 dB all-over the frequency band of 2–4.5 GHz. Also, the S11 of the proposed front-end stays below − 9.3 dB entire the band of interest. IIP2 and IIP3 of the proposed front-end are achieved 67.8 dBm and − 17.4 dBm, respectively. The proposed circuit consumes 17.8 mW power from 1.8 V voltage supply.

Keywords

Direct-conversion Front-end Noise-cancelling Wide-band 

References

  1. 1.
    Razavi, B. (1998). RF microelectronics. New Jersey: Prentice Hall.Google Scholar
  2. 2.
    Chen, H. C., Wang, T., Chiu, H. W., Yang, Y. C., Kao, T. H., Huang, G. W., et al. (2009). A 5-GHz-band CMOS receiver with low LO self-mixing front end. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(4), 705–713.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gatta, F., Manstretta, D., Rossi, P., & Svelto, F. (2004). A fully integrated 0.18 μm CMOS direct conversion receiver front-end with on-chip LO for UMTS. IEEE Journal of Solid-State Circuits, 39(1), 15–23.CrossRefGoogle Scholar
  4. 4.
    Kim, J., & Silva-Martinez, J. (2013). Low-power, low-cost CMOS direct-conversion receiver front-end for multi standard applications. IEEE Journal of Solid-State Circuits, 48(9), 2090–2103.CrossRefGoogle Scholar
  5. 5.
    Krizhanovskii, V., Kien, N. T., Lee, S. G., & Choi, J. C. (2005). A direct conversion CMOS front-end for 2.4 GHz band of IEEE 802.15.4 standard. In IEEE Asian solid-state circuits conference, pp. 449–452.Google Scholar
  6. 6.
    Mohamed, S. A. S., & Manoli, Y. (2013). Design of low-power direct-conversion RF front-end with a double balanced current-driven subharmonic mixer in 0.13 µm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(5), 1322–1330.CrossRefGoogle Scholar
  7. 7.
    Hong, E. P., Hwang, Y. S., & Yoo, H. J. (2008). Direct conversion RF front-end with a low-power consumption technique for 2.4 GHz ISM band. IET Microwaves, Antennas Propagation, 2(8), 898–903.CrossRefGoogle Scholar
  8. 8.
    Chen, C., Wu, J., Huang, D., & Shi, L. (2014). A low-power 2.4-GHz receiver front end with a lateral current-reusing technique. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(8), 564–568.CrossRefGoogle Scholar
  9. 9.
    Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 44(6), 428–435.CrossRefGoogle Scholar
  10. 10.
    Karrari, H., Aghdam, E. N., & Baghtash, H. F. (2016). A 3-11 GHz current-reuse low noise amplifier for ultra-wideband receivers. In Eighth international conference on ubiquitous and future networks (ICUFN), pp. 563–567.Google Scholar
  11. 11.
    Baghtash, H. F., & Ayatollahi, A. (2014). A zero-pole reposition based, 0.95-mW, 68-dB, linear-in-dB, constant-bandwidth variable gain amplifier. Circuits, Systems, and Signal Processing, 33(5), 1353–1368.CrossRefGoogle Scholar
  12. 12.
    Wang, J., & Zhu, Z. (2016). An improved-linearity, single-stage variable-gain amplifier using current squarer for wider gain range. Circuits, Systems, and Signal Processing, 35(12), 4550–4566.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Purighalla, S., & Maundy, B. (2012). 4-bit parallel-input exponential digital-to-analog converter in CMOS 0.18 μm technology. Circuits, Systems, and Signal Processing, 31(2), 413–433.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Macpherson, A. R., Belostotski, L., & Haslett, J. W. (2015). 65-nm CMOS voltage-to-time converter for 5-GS/s time-based ADCs. Circuits, Systems, and Signal Processing, 34(10), 3121–3145.CrossRefGoogle Scholar
  15. 15.
    Walravens, C., & Dehaene, W. (2014). Low-power digital signal processor architecture for wireless sensor nodes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(2), 313–332.CrossRefGoogle Scholar
  16. 16.
    Blaakmeer, S. C., Klumperink, E. A. M., Leenaerts, D. M. W., & Nauta, B. (2008). Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE Journal of Solid-State Circuits, 43(6), 1341–1350.CrossRefGoogle Scholar
  17. 17.
    Im, D., Nam, I., & Lee, K. (2010). A CMOS active feedback balun-LNA with high IIP2 for wideband digital TV receivers. IEEE Transactions on Microwave Theory and Techniques, 58(12), 3566–3579.Google Scholar
  18. 18.
    Bruccoleri, F., Klumperink, E. A. M., & Nauta, B. (2004). Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE Journal of Solid-State Circuits, 39(2), 275–282.CrossRefGoogle Scholar
  19. 19.
    Karrari, H., Aghdam, E. N., & Baghtash, H. F. (2017). A wideband noise cancelling balun-LNA. In 25th Iranian conference on electrical engineering (ICEE), pp. 153–157.Google Scholar
  20. 20.
    Karrari, H., Baghtash, H. F., & Aghdam, E. N. (2017). A high speed single-pole two-stage fully differential amplifier with intrinsic CMFB. Analog Integrated Circuits and Signal Processing, 90(1), 207–216.CrossRefGoogle Scholar
  21. 21.
    Figueiredo, M., Santos-Tavares, R., Santin, E., Ferreira, J., Evans, G., & Goes, J. (2011). A two-stage fully differential inverter-based self-biased CMOS amplifier with high efficiency. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(7), 1591–1603.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu, Y. H., Yang, Y. S., & Chen, Y. J. E. (2010). A compact wideband CMOS low noise amplifier with gain flatness enhancement. IEEE Journal of Solid-State Circuits, 45(3), 502–509.CrossRefGoogle Scholar
  23. 23.
    Trung-Kien, N., Nam-Jin, O., Viet-Hoang, L., & Sang-Gug, L. (2006). A low-power CMOS direct conversion receiver with 3-dB NF and 30-kHz flicker-noise corner for 915-MHz band IEEE 802.15.4 ZigBee standard. IEEE Transactions on Microwave Theory and Techniques, 54(2), 735–774.CrossRefGoogle Scholar
  24. 24.
    Brandolini, M., Rossi, P., Sanzogni, D., & Svelto, F. (2006). A +78 dBm IIP2 CMOS direct down conversion mixer for fully integrated UMTS receivers. IEEE Journal of Solid-State Circuits, 41(3), 552–559.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSahand University of TechnologyTabrizIran

Personalised recommendations