Advertisement

From narrow-band to ultra-wide-band microwave sensors in direct skin contact for breast cancer detection

  • Zahra Katbay
  • Sawsan Sadek
  • Marc Le Roy
  • André Perennec
  • Raafat Lababidi
Article
  • 143 Downloads

Abstract

In this paper, the design and test of different microwave antennas and sensors for breast cancer detection are presented. The sensors are designed and optimized to be used in direct skin contact, and for this purpose a specific breast phantom model is proposed. First, a miniaturized microstrip back-cavity Hilbert fractal antenna, operating in the ISM band (2.4–2.5 GHz), was designed. Then, this antenna was used to investigate the possibility of detecting the presence of breast tumors based on a narrowband frequency method that monitors the shift of the antenna frequency response. The antenna prototype was fabricated and tested in real in vivo measurement conditions on two different patients diagnosed with breast cancer. Measurement results have led after a comparison with the retro-simulation results of the structure to a more realistic breast model and to draw the limitations of this narrowband frequency method. As a time domain study seems to be more relevant, an UWB monopole antenna of dimensions 3 cm × 3 cm, to be used in direct contact with the breast model was designed. This antenna was optimized to both enhance the antenna/human body matching and to maximize the transfer of energy into the breast phantom by using a cavity, increasing by this way the detection potential. In order to improve the sensor’s directivity and enhance the electromagnetic field level inside the breast, a balanced antipodal Vivaldi antenna was also designed and optimized for a direct breast contact to operate in the 3.1–10.6 GHz band. A mono static and a bi static study in the time domain are finally proposed to investigate the presence of the tumor.

Keywords

Breast tumor Back-cavity Hilbert fractal antenna In vivo and ex vivo measurements UWB antenna Dispersive breast model BAVA 

Notes

Acknowledgements

The authors would like to thank Mr. Alexis Chevalier from the lab-STICC UBO for his help in tissue permittivity measurements and also Dr Pierre-François Dupré from the CHRU of Brest.

References

  1. 1.
    Sajjadieh, M., Foroozan, F., & Asif, A. (2009). Breast cancer detection using time reversal signal processing. In IEEE 13th international multi-optic conference, INMIC.Google Scholar
  2. 2.
    Hossain, M. D., & Mohan, A. S. (2013). Breast cancer detection in highly dense numerical breast phantoms using time reversal. In IEEE electromagnetics in advanced applications (ICEAA).Google Scholar
  3. 3.
    Elsdon, M., Yurduseven, O., & Smith, D. (2013). Early stage breast cancer detection using indirect microwave holography. Progress in Electromagnetics Research, 143, 405–419.CrossRefGoogle Scholar
  4. 4.
    Hossain, M. D., & Mohan, A. S. (2012). Breast cancer localization in three dimensions using time reversal DORT method. In IEEE antennas and propagation (ISAP).Google Scholar
  5. 5.
    Hagness, S. C., Taflove, A., & Bridges, J. E. (1998). Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antennaarray sensors. IEEE Transactions on Biomedical Engineering, 45, 1470–1479.CrossRefGoogle Scholar
  6. 6.
    Davis, S. K., Tandradinata, H., Hagness, S. C., & Van Veen, B. D. (2005). Ultrawideband microwave breast cancer detection: A detection-theoretic approach using the generalized likelihood ratio test. IEEE Transactions on Biomedical Engineering, 52(7), 1237–1250.CrossRefGoogle Scholar
  7. 7.
    Lazebnik, M., Popovic, D., McCartney, L., Watkins, C. B., Lindstrom, M. J., Harter, J., et al. (2007). A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Physics in Medicine and Biology, 52(20), 6093.CrossRefGoogle Scholar
  8. 8.
    Larsen, L., & Jacobi, J. (1986). Medical applications of microwave imaging (pp. 148–212). New York: IEEE press.Google Scholar
  9. 9.
    Karli, R., & Ammor, H. (2014). Evaluation of a microstrip patch antenna for breast tumor detection. International Journal of Innovation and Scientific Research, 5(2), 128–135.Google Scholar
  10. 10.
    AlShehri, S. A., & Khatun, S. (2009). UWB imaging for breast cancer detection using neural network. Progress in Electromagnetics Research, 7, 79–93.CrossRefGoogle Scholar
  11. 11.
    Sanpanich, A., Phasukkit, P., Pairoch, S., Sueaseenak, D., Kajornpreedanon, Y., Hamamoto, K., & Pintavirooj C. (2012). A basic investigation of cancerous breast microwave ablation using opened-tip applicator and ex vivo experiment. In Proceedings of 31th JSST, Kobe.Google Scholar
  12. 12.
    Stang, J. (2008). A 3D active microwave imaging system for breast cancer screening. Ph.D. dissertation, Department of Electrical and Computer Engineering, Duke University, Durham, NC.Google Scholar
  13. 13.
    Katbay, Z., Sadek, S., Le Roy, M., Lababidi, R., & Perennec, A. (2016). Microstrip back-cavity Hilbert fractal antenna for experimental detection of breast tumors. In IEEE MECAP conference.Google Scholar
  14. 14.
    Shahira Banu, M. A., Vanaja, S., & Poonguzhali, S. (2013). UWB microwave detection of breast cancer using SAR. 978-1-4673-6150-7/13/IEEE.Google Scholar
  15. 15.
    Klemm, M., Craddock, I. J., Leendertz, J. A., Preece, A., & Benjamin, R. (2008). Improved delay-and-sum beamforming algorithm for breast cancer detection. International Journal of Antennas and Propagation, 2008, 761402.CrossRefGoogle Scholar
  16. 16.
    Tuovinen, T., Kumpuniemi, T., Yazdandoost, K. Y., Hämäläinen, M., & Iinatti, J. (2013). Effect of the antenna-human body distance on the antenna matching in UWB WBAN applications. In 7th international symposium on medical information and communication technology (ISMICT).Google Scholar
  17. 17.
    Klemm, M., & Troester, G. (2006). EM energy absorption in the human body tissues due to UWB antennas. Progress in Electromagnetics Research, PIER, 62, 261–280.CrossRefGoogle Scholar
  18. 18.
    Yu, Y., Huang, Z., Zheng, C., & Wu, Y. (2014). A miniature antenna for 2.45 GHz RFID tag. Journal of Computers, 9(2), 404.CrossRefGoogle Scholar
  19. 19.
    Zastrow, E., Davis, S. K., Lazebnik, M., Kelcz, F., Van Veen, B. D., & Hagness, S. C. (2008). Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast. IEEE Transactions on Biomedical Engineering, 55(12), 2792–2800.CrossRefGoogle Scholar
  20. 20.
    Porter, E., Fakhoury, J., Oprisor, R., Coates, M., & Popović, M. (2010). Improved tissue phantoms for experimental validation of microwave breast cancer detection. In Proceedings of the fourth European conference on antennas and propagation (pp. 1–5).Google Scholar
  21. 21.
    Lazebnik, M., Okoniewski, M., Booske, J. H., & Hagness, S. C. (2007). Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies. IEEE MWCL, 17(12), 822–824.Google Scholar
  22. 22.
    Zastrow, E., Davis, S. K., Lazebnik, M., Kelcz, F., Van Veen, B. D., & Hagness, S. C. (2008). Database of 3D grid-based numerical breast phantoms for use in computational electromagnetics simulations. http://uwcem.ece.wisc.edu/home.htm.
  23. 23.
    Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in Medicine and Biology, 41, 2271–2293.CrossRefGoogle Scholar
  24. 24.
    Zhang, H. (2014). Microwave imaging for ultra-wideband antenna based cancer detection. Edinburgh: University of Edinburgh.Google Scholar
  25. 25.
    Karli, R., & Ammor, H. (2014). Evaluation of a microstrip patch antenna for breast tumor detection. International Journal of Innovation and Scientific Research, 5(2), 128–135.Google Scholar
  26. 26.
    Abdollahvand, A., Pirhadi, A., Ebrahimian, H., & Abdollahvand, M. (2014). A compact UWB printed antenna with bandwidth enhancement for in-body microwave imaging applications. Progress in Electromagnetics Research C, 55, 149–157.CrossRefGoogle Scholar
  27. 27.
    Katbay, Z., Sadek, S., Le Roy, M., Lababidi, R., & Perennec, A. (2017). A UWB antenna in direct breast contact for cancer detection. In IEEE SENSET conference.Google Scholar
  28. 28.
    Bourqui, J., Okoniewski, M., & Fear, E. C. (2010). Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Transactions on Antennas and Propagation, 58(7), 2318–2326.CrossRefGoogle Scholar
  29. 29.
    Klemm, M., Craddock, I. J., Leendertz, J. A., Preece, A., & Benjamin, R. (2009). Radar-based breast cancer detection using a hemispherical antenna array—Experimental results. IEEE Transactions on Antennas and Propagation, 57(6), 1692–1704.CrossRefGoogle Scholar
  30. 30.
    Fear, E. C., Li, X., Hagness, S. C., & Stuchly, M. A. (2002). Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions. IEEE Transactions on Biomedical Engineering, 49(8), 812–822.CrossRefGoogle Scholar
  31. 31.
    Xia, X., Liand, X., & Qin-Wei, L. (2013). A double constrained robust capon beamforming based imaging method for early breast cancer detection. Chinese Physics B, 22(9), 094101.CrossRefGoogle Scholar
  32. 32.
    Li, Q., Xiao, X., Song, H., & Liang, W. (2014). Tumor response extraction based on ensemble empirical mode decomposition for early breast cancer detection by UWB. In IEEE.Google Scholar
  33. 33.
    Hagness, S. C., Taflove, A., & Bridges, J. E. (1998). Two-dimensional fdtd analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors. IEEE Transactions on Biomedical Engineering, 45(12), 1470–1479.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zahra Katbay
    • 1
    • 3
  • Sawsan Sadek
    • 2
  • Marc Le Roy
    • 3
  • André Perennec
    • 3
  • Raafat Lababidi
    • 3
  1. 1.Doctoral School of Sciences and TechnologyLebanese UniversityBeirutLebanon
  2. 2.Lebanese University, University Institute of TechnologySaidaLebanon
  3. 3.Lab-STICCUMR CNRS 6285, Université de Brest (UBO)-Ensta BretagneBrestFrance

Personalised recommendations