Advertisement

A compact lowpass filter with ultra-high figure-of-merit for integrating with Class-F/F−1 power amplifiers

  • Milad Ekhteraei
  • Mohsen Hayati
  • Farzin Shama
Article
  • 22 Downloads

Abstract

This Paper presents a microstrip lowpass filter (LPF) with compact size, and ultra-wide stopband. The structure consists of a semi-circular shaped resonator (SCSR) and circular patches as the suppressing cell. The proposed LPF has a − 3 dB cutoff frequency at 1.53 GHz. It also has suitable performances such as an extended stopband width from 1.62 to 19.1 GHz (with the attenuation level of more than − 20 dB), ultra-sharp transition-band of 0.09 GHz (from − 3 to − 20 dB). Low insertion loss, high return loss and flat group delay in the region of the passband are very significant properties of this LPF. A proper agreement between the simulation and measurement results has been achieved after the fabrication and testing. Proposed LPF has an ultra-high figure-of-merit (FOM) of 126168, showing its strong efficiency. Forasmuch as harmonic control circuits (HCCs) play a key role in designing Class-F/F−1 power amplifiers (PAs); the asymmetric high performance LPFs can be used at the input and output of these PAs in the HCC section. Therefore, the proposed LPF can be suggested for this application.

Keywords

Lowpass filter Semi-circular resonator Ultra-sharp transition-band Ultra-wide stopband 

References

  1. 1.
    Cui, H., Wang, J., & Zhang, G. (2012). Design of microstrip lowpass filter with compact size and ultra-wide stopband. Electronics Letters, 48(14), 856–857.CrossRefGoogle Scholar
  2. 2.
    Wang, J., Cui, H., & Zhang, G. (2012). Design of compact microstrip lowpass filter with ultra-wide stopband. Electronics Letters, 48(14), 854–856.CrossRefGoogle Scholar
  3. 3.
    Faraghi, A., Ojaroudi, M., & Ghadimi, N. (2014). Compact microstrip low-pass filter with sharp selection characteristics using triple novel defected structures for UWB applications. Microwave and Optical Technology Letters, 56(4), 1007–1010.CrossRefGoogle Scholar
  4. 4.
    Chen, X., Zhang, L., Peng, Y., Leng, Y., Lu, H., & Zheng, Z. (2015). Compact lowpass filter with wide stopband bandwidth. Microwave and Optical Technology Letters, 57(2), 367–371.CrossRefGoogle Scholar
  5. 5.
    Wei, F., Chen, L., & Shi, X. W. (2012). Compact lowpass filter based on coupled-line hairpin unit. Electronic Letters, 48, 379–381.CrossRefGoogle Scholar
  6. 6.
    Ma, K., Yeo, K. S., & Lim, W. M. (2012). Ultra-wide rejection band lowpass cell. Electronics Letters, 48(2), 99–100.CrossRefGoogle Scholar
  7. 7.
    Liu, S., Xu, J., & Xu, Z. (2014). Compact lowpass filter with wide stopband using stepped impedance hairpin units. Electronics Letters, 51(1), 67–69.CrossRefGoogle Scholar
  8. 8.
    Hayati, M., & Lotfi, A. (2010). Compact lowpass filter with high and wide rejection in stopband using front coupled tapered CMRC. Electronics Letters, 46(12), 846–848.CrossRefGoogle Scholar
  9. 9.
    Hayati, M., Shama, F., & Ekhteraei, M. (2016). Miniaturized microstrip suppressing cell with wide stopband. Applied Computational Electromagnetics Society Journal, 31(10), 1244–1249.Google Scholar
  10. 10.
    Hayati, M., & Shama, F. (2017). A high-efficiency narrow-band class-F power amplifier integrated with a microstrip suppressing cell. Analog Integrated Circuits and Signal Processing, 90(2), 351–359.CrossRefGoogle Scholar
  11. 11.
    Hayati, M., & Shama, F. (2016). A harmonic-suppressed high-efficiency class-F power amplifier with Elliptic-Function low-pass filter. AEU-International Journal of Electronics and Communications, 70(10), 1417–1425.CrossRefGoogle Scholar
  12. 12.
    Hayati, M., Shama, F., Roshani, S., & Abdipour, A. (2014). Linearization design method in class-F power amplifier using artificial neural network. Journal of Computational Electronics, 13(4), 943–949.CrossRefGoogle Scholar
  13. 13.
    Hong, J. S. G., & Lancaster, M. J. (2004). Microstrip filters for RF/microwave applications (Vol. 167). New York: Wiley.Google Scholar
  14. 14.
    Fooks, E. H., & Zakarevicius, R. A. (1990). Microwave engineering using microstrip circuits. Upper Saddle River: Prentice-Hall Inc.Google Scholar
  15. 15.
    Hayati, M., Hajian, G., Shama, F., & Shahbazitabar, M. (2012). A novel microstrip lowpass filter with ultra-wide stopband using butterfly-shaped resonator. Caspian Journal of Applied Sciences Research, 1(13), 126–132.Google Scholar
  16. 16.
    Hayati, M., & Sheikhi, A. (2011). Design of wide stopband lowpass filter with sharp roll-off. IEICE Electronics Express, 8(16), 1348–1353.CrossRefGoogle Scholar
  17. 17.
    Hayati, M., & Sheikhi, A. (2011). Compact lowpass filter with ultra-wide stopband using novel spiral compact microstrip resonant cell. IEICE Electronics Express, 8(13), 1028–1033.CrossRefGoogle Scholar
  18. 18.
    Hayati, M., & Sheikhi, A. (2011). Microstrip lowpass filter with very sharp transition band and wide stopband. ETRI Journal, 33(6), 981–984.CrossRefGoogle Scholar
  19. 19.
    Hayati, M., & Sheikhi, A. (2013). Microstrip lowpass filter with very sharptransition band using T-shaped, patch, and stepped impedance resonators. ETRI Journal, 35(3), 538–541.CrossRefGoogle Scholar
  20. 20.
    Hayati, M., Ekhteraei, M., & Shama, F. (2017). Compact lowpass filter with flat group delay using lattice-shaped resonator. Electronic Letters, 53(7), 475–476.CrossRefGoogle Scholar
  21. 21.
    Kumar, A., Choudhary, D. K., & Chaudhary, R. K. (2017). A Compact via-free composite right/left handed low-pass filter with improved selectivity. Frequenz, 71(7–8), 357–361.Google Scholar
  22. 22.
    Hayati, M., Ekhteraei, M., & Shama, F. (2017). A compact microstrip lowpass filter with flat group-delay and ultra high figure-of-merit. In ACES (Vol. 32(2), p. 147).Google Scholar
  23. 23.
    Kolahi, A., & Shama, F. (2018). Compact microstrip lowpass filter with flat group-delay using triangle-shaped resonators. AEU-International Journal of Electronics and Communications, 83, 433–438.CrossRefGoogle Scholar
  24. 24.
    Shama, F., Hayati, M., & Ekhteraei, M. (2018). Compact microstrip lowpass filter using meandered unequal T-shaped resonator with ultra-wide rejection band. AEU-International Journal of Electronics and Communications, 85, 78–83.CrossRefGoogle Scholar
  25. 25.
    Hiedari, B., & Shama, F. (2018). A harmonics suppressed microstrip cell for integrated applications. AEU-International Journal of Electronics and Communications, 83, 519–522.CrossRefGoogle Scholar
  26. 26.
    Hayati, M., Shama, F., & Abbasi, H. (2013). Compact microstrip lowpass filter with wide stopband and sharp roll-off using tapered resonator. International Journal of Electronics, 100(12), 1751–1759.CrossRefGoogle Scholar
  27. 27.
    Hayati, M., Gholami, M., Vaziri, H. S., & Zaree, T. (2014). Design of microstrip lowpass filter with wide stopband and sharp roll-off using hexangular shaped resonator. Electronics Letters, 51(1), 69–71.CrossRefGoogle Scholar
  28. 28.
    Wei, F., Chen, L., Shi, X. W., Huang, Q. L., & Wang, X. H. (2010). Compact lowpass filter with wide stop-band using coupled-line hairpin unit. Electronics Letters, 46(1), 1.CrossRefGoogle Scholar
  29. 29.
    He, Q., & Liu, C. (2009). A novel low-pass filter with an embedded band-stop structure for improved stop-band characteristics. IEEE Microwave and Wireless Components Letters, 19(10), 629–631.CrossRefGoogle Scholar
  30. 30.
    Li, J. L., Qu, S. W., & Xue, Q. (2009). Compact microstrip lowpass filter with sharp roll-off and wide stop-band. Electronics Letters, 45(2), 110–111.CrossRefGoogle Scholar
  31. 31.
    Hayati, M., & Shama, F. (2012). Compact microstrip low-pass filter with wide stopband using symmetrical U-shaped resonator. IEICE Electronics Express, 9(3), 127–132.CrossRefGoogle Scholar
  32. 32.
    Hayati, M., & Vaziri, H. S. (2013). Compact microstrip low-pass filter with wide stop-band and sharp roll-off. Frequenz, 67(9–10), 263–269.Google Scholar
  33. 33.
    Hayati, M., Abbasi, H., & Shama, F. (2014). Microstrip lowpass filter with ultra wide stopband and sharp roll-off. Arabian Journal for Science and Engineering, 39(8), 6249–6253.CrossRefGoogle Scholar
  34. 34.
    Zhang, B., Li, Sh, & Huang, J. (2015). Compact lowpass filter with wide stopband using coupled rhombic stubs’. IEEE Microwave and Wireless Component Letters, 51(3), 264–266.Google Scholar
  35. 35.
    Hayati, M., Validi, M., Shama, F., & Ekhteraei, M. (2016). Compact microstrip low-pass filter with wide stop-band using P-shaped resonator. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 15(4), 309–318.CrossRefGoogle Scholar
  36. 36.
    Hayati, M., Vaziri, H. S., Ekhteraei, M., & Shama, F. (2016). Compact microstrip lowpass filter with ultra-sharp roll-off and ultra-wide stopband using stepped impedance hairpin resonator. Optik-International Journal for Light and Electron Optics, 127(13), 5221–5225.CrossRefGoogle Scholar
  37. 37.
    Hayati, M., Khodadoost, M., & Abbasi, H. (2017). Microstrip lowpass filter with wide stopband and sharp roll-off using modified radial stub resonator. International Journal of Microwave and Wireless Technologies, 9(3), 499–504.CrossRefGoogle Scholar
  38. 38.
    Jiang, Y., Wei, B., Heng, Y., Guo, X., Cao, B., & Jiang, L. (2017). Compact superconducting lowpass filter with wide stopband. Electronics Letters, 53(14), 931–933.CrossRefGoogle Scholar
  39. 39.
    Jiang, S., & Xu, J. (2017). Sharp roll-off planar lowpass filter with ultra-wide stopband up to 40 GHz. Electronics Letters, 53(11), 734–735.CrossRefGoogle Scholar
  40. 40.
    Jiang, S., & Xu, J. (2017). Compact microstrip lowpass filter with ultra-wide stopband based on dual-plane structure. Electronics Letters, 53(9), 607–609.CrossRefGoogle Scholar
  41. 41.
    Sheikhi, A., Alipour, A., & Hemesi, H. (2017). Design of microstrip wide stopband lowpass filter with lumped equivalent circuit. Electronics Letters, 53(21), 1416–1418.CrossRefGoogle Scholar
  42. 42.
    Wu, J. J., & Li, L. (2018). Stopband-extended and size-miniaturized low-pass filter based on interdigital capacitor loaded hairpin resonator with four transmission zeros. Frequenz, 72(5–6), 221–226.CrossRefGoogle Scholar
  43. 43.
    Sahu, B., Singh, S., Meshram, M. K., & Singh, S. P. (2018). Study of compact microstrip lowpass filter with improved performance using defected ground structure. International Journal of RF and Microwave Computer-Aided Engineering, 28(4), e21209.CrossRefGoogle Scholar
  44. 44.
    Bhat, U. R., Jha, K. R., & Singh, G. (2018). Wide stopband harmonic suppressed low-pass filter with novel DGS. International Journal of RF and Microwave Computer-Aided Engineering, 28(5), e21235.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Kermanshah BranchIslamic Azad University of KermanshahKermanshahIran
  2. 2.Department of Electrical Engineering, Faculty of EngineeringRazi UniversityKermanshahIran

Personalised recommendations