Advertisement

Monolithic transformer and its application in a high-speed optical interconnect VCSEL driver

  • Xiangliang JinEmail author
  • Xiao Xiao
  • Yongfeng Sun
  • Huayan Pu
  • Yan Peng
  • Jun Luo
Article
  • 2 Downloads

Abstract

A novel vertical cavity surface emitting laser (VCSEL) driver is presented for high-speed optical interconnect. At the output stage of the driver, a transformer is used to compensate the bandwidth limitations imposed by transistors, pads and packaging parasitic. At the same time, a monolithic transformer equivalent circuit model applied in the circuit design and simulation of the VCSEL driver is proposed. Using this model, the driver has been designed and fabricated, and measurement results show that the driver with monolithic transformer compensation achieves 25% rise time and 20% fall time reduction compared to the driver without transformer. The eye diagram has been improved considerably.

Keywords

High-speed optical interconnect Vertical cavity surface emitting laser driver Monolithic transformer Modeling 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61774129, 61704145, 61827812) and the National Natural Science Foundation of China Outstanding Young Scientists Fund Project (Grant No. 61525305).

References

  1. 1.
    Kuboki, T., Ohtomo, Y., Tsuchiya, A., et al. (2010). A 16 Gbps laser-diode driver with interwoven peaking inductors in 0.18-µm CMOS. In Custom integrated circuits conference (CICC), San Jose (pp. 1–4).Google Scholar
  2. 2.
    Chujo, N., Takai, T., Sugawara, T., et al. (2011). A 25 Gb/s 65-nm CMOS low-power laser diode driver with mutually coupled peaking inductors for optical interconnects. IEEE Transactions on Circuits and Systems I (TCAS I), 58(9), 2061–2068.MathSciNetGoogle Scholar
  3. 3.
    Tsai, C. M., & Chiu, M. C. (2008). A 10 Gb/s laser-diode driver with active back-termination in 0.18 μm CMOS. In Solid-state circuits conference (ISSCC), San Francisco (pp. 222–608).Google Scholar
  4. 4.
    Kuboki, T., Ohtomo, Y., Tsuchiya, A., et al. (2013). A 25-Gb/s LD driver with area-effective inductor in a 0.18-µm CMOS. In Asia and South Pacific design automation conference (ASP-DAC), Yokohama (pp. 105–106).Google Scholar
  5. 5.
    Rabii, S., Acharya, N., Chau, P., et al. (2006). An integrated VCSEL driver for 10 Gb ethernet in 0.13 µm CMOS. In Solid-state circuits conference (ISSCC), San Francisco (pp. 930–939).Google Scholar
  6. 6.
    Palermo, S., & Horowitz, M. (2006). High-speed transmitters in 90 nm CMOS for high-density optical interconnects. In Solid-state circuits conference (ISSCC), San Francisco (pp. 508–511).Google Scholar
  7. 7.
    Palermo, S., Emami-Neyestanak, A., & Horowitz, M. (2007). A 90 nm CMOS 16 Gb/s transceiver for optical interconnects. In Solid-state circuits conference (ISSCC), San Francisco (pp. 44–586).Google Scholar
  8. 8.
    Long, J. R. (2000). Monolithic transformers for silicon RF IC design. IEEE Journal of Solid-State Circuits, 35(9), 1368–1382.CrossRefGoogle Scholar
  9. 9.
    El-Gharniti, O., Kerherve, E., & Begueret, J. B. (2007). Modeling and characterization of on-chip transformers for silicon RFIC. IEEE Transactions on Microwave Theory and Techniques, 55(4), 607–615.CrossRefGoogle Scholar
  10. 10.
    Mayevskiy, Y., Watson, A., Francis, P., et al. (2005). A new compact model for monolithic transformers in silicon-based RFICs. IEEE Microwave and Wireless Components Letters, 15(6), 419–421.CrossRefGoogle Scholar
  11. 11.
    Weinberg, L. (1962). Network analysis and synthesis. New York: McGraw-Hill.Google Scholar
  12. 12.
    Yen, C. S., Fazarinc, Z., & Wheeler, R. L. (1982). Time-domain skin-effect model for transient analysis of lossy transmission lines. Proceedings of the IEEE, 70(7), 750–757.CrossRefGoogle Scholar
  13. 13.
    Ng, K. T., Rejaei, B., & Burghartz, J. N. (2002). Substrate effects in monolithic RF transformers on silicon. IEEE Transactions on Microwave Theory and Techniques, 50(1), 377–383.CrossRefGoogle Scholar
  14. 14.
    Long, J. R., & Copeland, M. A. (1997). The modeling, characterization, and design of monolithic inductors for silicon RF IC’s. IEEE Journal of Solid-State Circuits, 32(3), 357–369.CrossRefGoogle Scholar
  15. 15.
    Mayevskiy, Y. (2005). Analysis and modeling of monolithic on-chip transformers on silicon substrates. Electric transformers: Mathematical models.Google Scholar
  16. 16.
    Tao, R., Berroth, M., & Wang, Z. G. (2003). Low power 10 Gbit/s VCSEL driver for optical interconnect. Electronics Letters, 39(24), 1743–1744.CrossRefGoogle Scholar
  17. 17.
    Zhu, K., Saxena, V., Wu, X., et al. (2015). Design considerations for traveling-wave modulator-based CMOS photonic transmitters. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(4), 412–416.CrossRefGoogle Scholar
  18. 18.
    Yazaki, T., Takai, T., Chujo, N., et al. (2014). A 20 Gbps inductorless CMOS optical receiver for short-distance VCSEL-based 850 nm optical links. Analog Integrated Circuits and Signal Processing, 78(1), 43–51.CrossRefGoogle Scholar
  19. 19.
    Fattaruso, J. W., & Sheahan, B. (2006). A 3-V 4.25-Gb/s laser driver with 0.4-V output voltage compliance. IEEE Asian Journal of Solid-State Circuits, 41(8), 1930–1937.CrossRefGoogle Scholar
  20. 20.
    Han, J., Choi, B., Park, K., et al. (2007). A 2.5 Gb/s ESD-protected dual-channel optical transceiver array. In Asian solid-state circuits conference (ASSCC), Jeju (pp. 156–159).Google Scholar
  21. 21.
    Lin, A. C. Y., & Loinaz, M. J. (2008). A serial data transmitter for multiple 10 Gb/s communication standards in 0.13 μm CMOS. In Solid-state circuits conference (ISSCC), San Francisco (pp. 108–599).Google Scholar
  22. 22.
    Zhang, T., Gui, P., Chakraborty, S., et al. (2016). 10-Gb/s distributed amplifier-based VCSEL driver IC with ESD protection in 130-nm CMOS. IEEE Transactions on Very Large Scale Integration Systems, 24(7), 2502–2510.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and OptoelectronicsXiangtan UniversityXiangtanChina
  2. 2.School of Physics and ElectronicsHunan Normal UniversityChangshaChina
  3. 3.School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiChina

Personalised recommendations