Advertisement

A new secure communication scheme using fractional order delayed chaotic system: design and electronics circuit simulation

  • Fadia Zouad
  • Karim KemihEmail author
  • Hamid Hamiche
Article
  • 43 Downloads

Abstract

In this paper, a new approach to secure in perturbed receiver based on the Chen fractional order delayed chaotic system is developed and the electronics circuit is simulated with Multisim. The main idea of this approach is the injection of the transmitted message in the dynamics of the Chen fractional order delayed chaotic system in the transmitter. To recover the message from the perturbed receiver, we use the H-infinity to establish the synchronization between the transmitter and the receiver and to recover the transmitted signal. Little paper in the literature presents the electronic circuit of the secure communication using fractional order delayed chaotic system due to the difficulty of realization, for it, the electronic circuit is detailed using Multisim software to demonstrate the feasibility of the proposed approach.

Keywords

Secure communication Synchronization chaotic system H-infinity control Linear matrix inequality Chaotic demodulation Delay fractional order chaotic system Circuit realization 

References

  1. 1.
    Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141.CrossRefzbMATHGoogle Scholar
  2. 2.
    Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fallahi, K., & Leung, H. (2010). A chaos secure communication scheme based on multiplication modulation. Communications in Nonlinear Science and Numerical Simulation, 15(2), 368–383.CrossRefzbMATHGoogle Scholar
  4. 4.
    Mata-Machuca, J. L., Martínez-Guerra, R., Aguilar-López, R., & Aguilar-Ibañez, C. (2012). A chaotic system in synchronisation and secure communications. Communications in Nonlinear Science and Numerical Simulation, 17(4), 1706–1713.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Senouci, A., Boukabou, A., Busawon, K., et al. (2015). Robust chaotic communication based on indirect coupling synchronisation. Circuits, Systems, and Signal Processing, 34(2), 393–418.CrossRefGoogle Scholar
  6. 6.
    Hamiche, H., Megherbi, O., Kara, R., Saddaoui, R., Laghrouche, M., & Djennoune, S. (2017). A new implementation of an impulsive synchronization of two discrete-time hyperchaotic systems using Arduino-Uno boards. International Journal of Modeling, Identification and Control, 28(02), 177–186.CrossRefGoogle Scholar
  7. 7.
    Bouhous, A., & Kemih, K. (2018). Novel encryption method based on optical time-delay chaotic system and a wavelet for data transmission. Optics & Laser Technology, 108, 162–169.CrossRefGoogle Scholar
  8. 8.
    Halimi, M., Kemih, K., & Ghanes, M. (2014). Circuit simulation of an analog secure communication based on synchronized chaotic Chua’s system. Applied Mathematics & Information Sciences, 8(4), 1509.CrossRefGoogle Scholar
  9. 9.
    Kemih, K., Ghanes, M., Remmouche, R., et al. (2015). A novel 5D-dimentional hyperchaotic system and its circuit simulation by EWB. Mathematical Sciences Letters, 4(1), 1–4.Google Scholar
  10. 10.
    Zambrano-Serrano, E., Muñoz-Pacheco, J. M., & Campos-Cantón, E. (2017). Chaos generation in fractional-order switched systems and its digital implementation. AEU-International Journal of Electronics and Communications, 79, 43–52.CrossRefGoogle Scholar
  11. 11.
    Chao, L. (2015). Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system. International Journal of Modern Physics C, 26(06), 1550065.CrossRefGoogle Scholar
  12. 12.
    Hamiche, H., Guermah, S., Kassim, S., et al. (2015). Secure data transmission scheme based on fractional-order discrete chaotic system. In 2015 3rd international conference on control, engineering & information technology (CEIT) (pp. 1–6). IEEE.Google Scholar
  13. 13.
    Shah, D. K., Chaurasiya, R. B., Vyawahare, V. A., et al. (2017). FPGA implementation of fractional-order chaotic systems. AEU-International Journal of Electronics and Communications, 78, 245–257.CrossRefGoogle Scholar
  14. 14.
    Borah, M., Singh, P. P., & Roy, B. K. (2016). Improved chaotic dynamics of a fractional-order system, its chaos-suppressed synchronisation and circuit implementation. Circuits, Systems, and Signal Processing, 35(6), 1871–1907.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Megherbi, O., Hamiche, H., Djennoune, S., & Bettayeb, M. (2017). A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems. Nonlinear Dynamics, 90(3), 1519–1533.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Das, S. (2011). Functional fractional calculus. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  17. 17.
    Mittag-Leffler, G. M. (1903). Sur la nouvelle fonction Eα (x). Comptes Rendus de l’Academie des Sciences de Paris, 137(2), 554–558.zbMATHGoogle Scholar
  18. 18.
    Mittag-Leffler, G. M. (1905). Sur la representation analytique d unefunction branche uniforme dune fonction. Acta Mathematica, 239, 101–181.CrossRefzbMATHGoogle Scholar
  19. 19.
    Loverro, A. (2004). Fractional calculus: history, definitions and applications for the engineer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering (pp. 1–28).Google Scholar
  20. 20.
    Kilbas, A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and applications of fractional differential equations. Elsevier, North-Holland Mathematics Studies, 204. Fractional calculus and applied analysis (Vol. 9, No. 1, p. 71).Google Scholar
  21. 21.
    Ishteva, M. (2005). Properties and applications of the Caputo fractional operator. M.Sc., Thesis.Google Scholar
  22. 22.
    Podlubny, I. (1998). Fractional differential equations, volume 198: An introduction to fractional derivatives, fractional differential equations, to methods of their…(mathematics in science and engineering).Google Scholar
  23. 23.
    Efe, M. Ö. (2008). Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(6), 1561–1570.CrossRefGoogle Scholar
  24. 24.
    Boroujeni, E. A., & Momeni, H. R. (2012). Observer based control of a class of nonlinear fractional-order systems using LMI. International Journal of Science and Engineering Investigations, 1(1), 48–52.Google Scholar
  25. 25.
    Tang, J. (2014). Synchronization of different fractional order time-delay chaotic systems using active control. Mathematical Problems in Engineering.  https://doi.org/10.1155/2014/262151.MathSciNetGoogle Scholar
  26. 26.
    Cheng, C.-K., Kuo, H.-H., Hou, Y.-Y., et al. (2008). Robust chaos synchronization of noise-perturbed chaotic systems with multiple time-delays. Physica A: Statistical Mechanics and its Applications, 387(13), 3093–3102.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, X. F., & Wang, Z. Q. (2003). A robust demodulation approach to communications using chaotic signals. International Journal of Bifurcation and Chaos, 13(01), 227–231.CrossRefzbMATHGoogle Scholar
  28. 28.
    Boukal, Y., Darouach, M., Zasadzinski, M., et al. (2014). Design of functional fractional-order observers for linear time-delay fractional-order systems in the time domain. In 2014 International conference on fractional differentiation and its applications (ICFDA) (pp. 1–6). IEEE.Google Scholar
  29. 29.
    Pourgholi, M., & Majd, V. J. (2011). A nonlinear adaptive resilient observer design for a class of Lipschitz systems using LMI. Circuits, Systems, and Signal Processing, 30(6), 1401–1415.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, C. X. (2011). Fractional-order chaotic circuit theory and applications. Xian Jiaotong University Press, Xian.Google Scholar
  31. 31.
    Jun-Jie, L., & Chong-Xin, L. (2007). Realization of fractional-order Liu chaotic system by circuit. Chinese Physics, 16(6), 1586.CrossRefGoogle Scholar
  32. 32.
    Biswas, D., & Banerjee, T. (2016). A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dynamics, 83(4), 2331–2347.MathSciNetCrossRefGoogle Scholar
  33. 33.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.L2EI LaboratoryJijel UniversityJijelAlgeria
  2. 2.L2CSPUMMTOTizi-OuzouAlgeria

Personalised recommendations