Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 93, Issue 2, pp 245–256 | Cite as

A 700 MHz laser radar receiver realized in 0.18 μm HV-CMOS

  • Mikko Hintikka
  • Juha Kostamovaara
Article

Abstract

This study presents a CMOS receiver chip realized in 0.18 µm High-Voltage CMOS (HV-CMOS) technology and intended for high precision pulsed time-of-flight laser range finding utilizing high-energy sub-ns laser pulses. The IC chip includes a trans-impedance preamplifier, a post-amplifier and a timing comparator. Timing discrimination is based on leading edge detection and the trailing edge is also discriminated for measuring the width of the pulse. The transimpedance of the channel is 25 kΩ, the uncompensated walk error is 470 ps in the dynamic range of 1:21,000 and the input referred equivalent noise current 450 nA (rms).

Keywords

Laser radar receiver Laser ranging Optical sensors Timing discrimination 

Notes

Acknowledgements

The authors acknowledge financial support from the Academy of Finland (Centre of Excellence in Laser Scanning Research, Contract Nos. 272196, 255359, 263705 and 251571) and the Infotech Oulu Graduate School.

References

  1. 1.
    Ruotsalainen, T., Palojärvi, P., & Kostamovaara, J. (1997). A BiCMOS differential amplifier and timing discriminator for the receiver of a laser radar. Analog Integrated Circuits and Signal Processing, 13, 341–352.CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Meng, Z., Liu, J., & Jiang, H. (2011). High precision infrared pulse laser ranging for active vehicle anti-collision application. Electric Information and Control Engineering (ICEICE), 1404–1407.Google Scholar
  3. 3.
    Lee, M., & Baeg, S. H. (2012). Advanced compact 3D LIDAR using a high speed fiber coupled pulsed laser diode and a high accuracy timing discrimination readout circuit. Proceedings of SPIE Laser Radar Technology and Applicatons XVII, 879, 8379Z.Google Scholar
  4. 4.
    Cho, H.-S., Kim, C.-H., & Lee, S.-G. (2014). A high-sensitivity and low-walk error LADAR receiver for military application. IEEE Transactions on Circuits and Systems-I, 61(10), 3007–3015.CrossRefGoogle Scholar
  5. 5.
    Vainshtein, S., Yuferev, V. S., & Kostamovaara, J. (2002). Properties of the transient of avalanche transistor switching at extreme current densities. IEEE Transactions on Electron Devices, 49(1), 142–149.CrossRefGoogle Scholar
  6. 6.
    Lanz, B., Ryvking, B. S., Avrutin, E. A., & Kostamovaara, J. (2013). Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes. Optics Express, 21(24), 29780–29791.CrossRefGoogle Scholar
  7. 7.
    Hallman, L. W., Ryvikin, B., Haring, K., Ranta, S., Leinonen, T., & Kostamovaara, J. (2010). Asymmetric waveguide laser diode operated in gain switching mode with high-power optical pulse generation. Electronics Letters, 46(1), 1–2.CrossRefGoogle Scholar
  8. 8.
    Hallman, L. W., Huikari, J., & Kostamovaara, J. (2014). A high-speed/power laser transmitter for single photon imaging applications. IEEE Sensors, 1157–1160.Google Scholar
  9. 9.
    Ryvkin, B. S., Avrutin, E. A., & Kostamovaara, J. (2009). Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching. Journal of Lightwave Technology, 27(12), 2125–2131.CrossRefGoogle Scholar
  10. 10.
    Lau, K. Y. (1988). Gain switching of semiconductor injection lasers. Applied Physics Letters, 52(4), 257–259.CrossRefGoogle Scholar
  11. 11.
    Bimberg, D., Ketterer, K., Bottcher, E. H., & Scoll, E. (1986). Gain modulation of unbiased semiconductor lasers: Ultrashort pulse generation. International Journal of Electronics, 60(23), 23–45.CrossRefGoogle Scholar
  12. 12.
    Volpe, F. P., Gorfinkel, V., Sola, J., & Kompa, G. 140 W/40 ps single optical pulses for sensor application. In Conference on Lasers and Electro-Optics, Anaheim, CA. 1994.Google Scholar
  13. 13.
    Vainshtein, S., & Kostamovaara, J. (1998). Spectral filtering for time isolation of intensive picosecond optical pulses from a Q-switched laser diode. Journal of Applied Physics, 84(4), 1843–1847.CrossRefGoogle Scholar
  14. 14.
    Van de Plassche, R. J. (1988). An 8-bit 100-MHz Fully-Nyquist Analog-to-Digital Converter. IEEE Journal of Solid State Circuits, 23(6), 1334–1344.CrossRefGoogle Scholar
  15. 15.
    Säckinger, E. (2005). Broadband Circuits for Optical Fiber Communication. NJ: Wiley.CrossRefGoogle Scholar
  16. 16.
    Carcia del Pozo, J. M., Serdijn, W. A., Otin, A., & Celma, S. (2011). 2.5 Gb/s CMOS preamplifier for low-cost fiber-optics receivers. Analog Integrated Circuits and Signal Processing, 66, 363–370.CrossRefGoogle Scholar
  17. 17.
    Han, S. M., Sun, G., Jiang, F., Yu, X.-P., & Wu, X. B. (2009). Area-efficient CMOS transimpedance amplifier for optical receivers. Analog Integrated Circuits and Signal Processing, 58, 67–70.CrossRefGoogle Scholar
  18. 18.
    Zheng, H., Ma, R., & Zhu, Z. (2017). Design of linear dynamic range and high sensitivity matrix quadrant APDs ROIC for position sensitive detector application. Microelectronics Journal, 63, 49–57.CrossRefGoogle Scholar
  19. 19.
    Ma, R., Liu, M., Zheng, H., & Zhu, Z. (2017). A 77-dB dynamic range low-power variable-gain transimpedance amplifier for linear LADAR. IEEE Transactions on Circuits and Systems II: Express Briefs. doi: 10.1109/TCII.2017.2684822.Google Scholar
  20. 20.
    Abramowitz, M., & Stegyn, I.A. (1964). Handbook of mathematical functions with formula, graphs, and mathematical tables. New York: Dover Publications Inc.Google Scholar
  21. 21.
    McIntyre, B. J. (1970). Comparison of photomultipliers and avalanche photodiodes for laser applications. IEEE Transactions on Electron Devices, 17(4), 347–352.CrossRefGoogle Scholar
  22. 22.
    Wang, J., & Kostamovaara, J. (1994). Radiometric analysis and simulation of signal power function in a short-range laser radar. Applied Optics, 33(18), 4069–4076.CrossRefGoogle Scholar
  23. 23.
    Hintikka M., & Kostamovaara J. (2015). Time domain characterization of avalanche photo detectors for sub-ns optical pulses. In International Instrumentation and Measurement Technology Conference, pp. 2015–2019.Google Scholar
  24. 24.
    Cherry, E. M., & Hooper, D. E. (1968). The design of wideband transistor feedback amplifiers. Proceedings of the Institution of Electrical Engineers, 110, 375–398.CrossRefGoogle Scholar
  25. 25.
    Galal, S., & Razavi, B. (2003). 10-Gb/s limiting amplifier and laser/modulator driver in 0.18 μm CMOS technology. IEEE Journal of Solid-State Circuits, 38(12), 2138–2146.CrossRefGoogle Scholar
  26. 26.
    Huang, S.-H., Chen, W.-Z., Chang, Y.-W., & Huang, Y.-T. (2011). A 10-Gb/s OEIC with meshed spatially-modulated photo detector in 0.18-μm CMOS technology. IEEE Journal of Solid State Circuits, 46(5), 1158–1169.CrossRefGoogle Scholar
  27. 27.
    Zheng, H., Ma, R., & Zhu, Z. (2017). A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique. Analog Integrated Circuits and Signal Processing. doi: 10.1007/s10470-016-0867-1.Google Scholar
  28. 28.
    Abidi, A. A. (1987). On the noise optimum of gigahertz FET transimpedance amplifiers. IEEE Journal of Solid State Circuits, 22(6), 1207–1209.CrossRefGoogle Scholar
  29. 29.
    ZhiQun, L., LiLi, C., Wei, L., & Li, Z. (2012). A 12 × 10 Gb/s fully integrated CMOS parallel optical receiver frong-end amplifier array. Science China, 55(6), 1415–1428.Google Scholar
  30. 30.
    Jansson, J., Koskinen, V., Mäntyniemi, A., & Kostamovaara, J. (2012). A multi-channel high precision CMOS time-to-digital converter for laser scanner based perception systems. IEEE Transactions on Instrumentation and Measurement, 61(9), 2581–2590.CrossRefGoogle Scholar
  31. 31.
    Kurtti, S., & Kostamovaara, J. (2009). Pulse width time walk compensation method for pulsed time-of-fligh laser rangefinder. In Interantional Instrumentation and Measurement Technology Conference, Singapore, May 2009.Google Scholar
  32. 32.
    Nissinen, J., & Kostamovaara, J. (2007). An integrated laser radar receiver channel with wide dynamic range. Electronics, Circuits and Systems In: 14th IEEE international Conference, pp. 10–13.Google Scholar
  33. 33.
    Kurtti, S., Nissinen, J., & Kostamovaara, J. (2017). A wide dynamic range CMOS laser radar receiver with a time-domain walk error compensation scheme. IEEE Transactions on Circuits and Systems I, 64(3), 550–561.CrossRefGoogle Scholar
  34. 34.
    Ngo, T.-H., Kim, C.-H., Kwon, Y. J., Ko, J. S., Kim, D.-B., & Park, H.-H. (2013). Wideband receiver for a three-dimensional ranging LADAR system. IEEE Transactions on Circuits and Systems I, 60(2), 448–456.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Nissinen, J., Nissinen, I., & Kostamovaara, J. (2009). Integrated receiver including both receiver channel and TDC for a pulsed-time-of-flight laser range finder with cm-level accuracy. IEEE Journal of Solid-State Circuits I, 44(5), 1486–1497.CrossRefGoogle Scholar
  36. 36.
    Cho, H.-S., Kim, C.-H., & Lee, S.-G. (2014). A high-sensitivity and low walk error LADAR receiver for military application. IEEE Transactions on Circuits and Systems I, 61(10), 3007–3015.CrossRefGoogle Scholar
  37. 37.
    Xiao, J., Lopez, M., Hu, X., Xiao, J., & Yan, F. (2016). A continuous wavelet transform-based modulus maxima approach for the walk error compensation of pulsed time-of-flight laser rangefinders. International Journal for Light and Electron Optics, 127(4), 1980–1987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Information and Electrical Engineering, Circuits and Systems Research GroupUniversity of OuluLinnanmaaFinland

Personalised recommendations