Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 92, Issue 3, pp 403–413 | Cite as

Design and electrochemical measurement of a current-mode analog-to-time converter with short-pulse output capability using local intra-cell activation for high-speed time-domain biosensor array

  • Kei IkedaEmail author
  • Atsuki Kobayashi
  • Kazuo Nakazato
  • Kiichi Niitsu
Article

Abstract

This study demonstrates a current-mode analog-to-time converter (CMATC) enabling short-pulse output capability by using the newly-proposed local intra-cell activation technique, which contributes to the development of high-speed time-domain biosensor array. In the conventional CMATC, the activation pulse is generated globally at the periphery. This limits the output pulse width because of the considerable parasitic word-line capacitance. In this study, a shorter pulse output was achieved by generating the activation pulse locally by using intra-cell configuration without being affected by word-line capacitances. In 1024 × 1024 configuration, 77% pulse width reduction was confirmed using SPICE simulation. A test chip was fabricated using a 0.6 µm standard CMOS process. The measurement results obtained using a sensor chip demonstrate the expected input–output characteristic and 3.36 ns pulse output. Finally, we measure the change in potential with respect to the ratio of the ion concentration, by using Fe(CN) 6 3− and Fe(CN) 6 4− as the oxidant and reductant, respectively.

Keywords

Bio-imaging Time-domain Current-mode Short-pulse output 

Notes

Acknowledgements

This research was financially supported by JST, PRESTO, by a Grant-in-Aid for Scientific Research (S) (Nos. 20226009, 25220906), Grants-in-Aid for Young Scientists (A) (No. 16H06088) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by the Strategic Information and Communications R&D Promotion Programme (Nos. 121806006, 152106004) of the Ministry of Internal Affairs and Communications, Japan, by TOYOTA RIKEN, and by The Nitto Foundation.

References

  1. 1.
    Sawada, K., Mimura, S., Tomita, K., Nakanishi, T., Tanabe, H., Ishida, M., et al. (1999). Novel CCD—based pH imaging sensor. IEEE Transactions on Electron Devices, 46(9), 1846–1849.CrossRefGoogle Scholar
  2. 2.
    Nakazato, K. (2012). BioCMOS LSIs for portable gene-based diagnostic inspection system. In IEEE international symposium circuits and systems (pp. 2287–2290).Google Scholar
  3. 3.
    Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475(7356), 348–352.CrossRefGoogle Scholar
  4. 4.
    Ballini, M., Muller, J., Livi, P., Chen, Y., Frey, U., Settler, A., et al. (2014). A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro. IEEE Journal of Solid-State Circuits, 49(11), 2705–2719.CrossRefGoogle Scholar
  5. 5.
    Yuan, X., Kim, S., Juyon, J., D’Urbino, M,. Bullmann, T., Chen, Y. et al. (2016). A microelectrode array with 8640 electrodes enabling simultaneous full-frame readout at 6.5 kfps and 112-channel switch-matrix readout at 20 kS/s. In IEEE symposium VLSI circuits (pp. 1–2).Google Scholar
  6. 6.
    Sukegawa, S., Umebayashi, T., Nakajima, T., Kawanobe, H., Koseki, K., Hirota, I. et al. (2013). A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor. In IEEE international solid-state circuits conference digest technical papers (pp. 484–485).Google Scholar
  7. 7.
    Wang, K., Liu, Y., Toumazou, C., & Georgiou., P. (2012). A TDC based ISFET readout for large-scale chemical sensing systems. In IEEE biomedical circuits and systems conference (pp. 176–179).Google Scholar
  8. 8.
    Posch, Christoph, Matolin, Daniel, & Wohlgenannt, Rainer. (2011). A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS. IEEE Journal of Solid-State Circuits, 46(1), 259–275.CrossRefGoogle Scholar
  9. 9.
    Hanson, S., Foo, Z., Blaauw, D., & Sylvester, D. (2010). A 0.5 V sub-microwatt CMOS image sensor with pulse-width modulation read-out. IEEE Journal of Solid-State Circuits, 45(4), 759–767.CrossRefGoogle Scholar
  10. 10.
    Cho, K., Lee, S., KAvehei, O., & Eshraghian, K. (2014). High fill factor low-voltage CMOS image sensor based on time-to-threshold PWM VLSI architecture. IEEE Transaction on VLSI Systems, 22(9), 1548–1556.CrossRefGoogle Scholar
  11. 11.
    Benetti, M., Gottardi, M., & Smilansky., Z. (2013). A 80 µW 30 fps 104 × 104 all-nMOS pixels CMOS imager with 7-bit PWM ADC for robust detection of relative intensity change. In Proceedings ESSCIRC (pp. 303–306).Google Scholar
  12. 12.
    Takihi, M., Niitsu, K., & Nakazato., K. (2014). Charge-conserved analog-to-time converter for a large-scale CMOS biosensor array. In IEEE international symposium circuits and systems (pp. 33–36).Google Scholar
  13. 13.
    Ishihara, H., Niitsu, K., & Nakazato, K. (2015). Analysis and experimental verification of DNA single-base polymerization detection using CMOS FET-based redox potential sensor array. Japanese Journal of Applied Physics, 54(4S), 04DL05.CrossRefGoogle Scholar
  14. 14.
    Niitsu, K., Ota, S., Gamo, K., Kondo, H., Hori, M., & Nakazato, K. (2015). Development of microelectrode arrays using electroless plating for CMOS-based direct counting of bacterial and HeLa cells. IEEE Transactions on Biomedical Circuits and Systems, 9(5), 607–619.CrossRefGoogle Scholar
  15. 15.
    Ota, S., Niitsu, K., Kondo, H., Hori, M., & Nakazato, K. (2014). A CMOS sensor platform with 1.2 μm × 2.05 μm electroless-plated 1024 × 1024 microelectrode array for high-sensitivity rapid direct bacteria counting. In IEEE biomedical circuits and systems conference (pp. 460–463).Google Scholar
  16. 16.
    Gamo, K., Niitsu, K., & Nakazato, K. (2015). Noise-immune current-integration based CMOS amperometric sensor platform with 1.2 μm × 2.05 μm electroless-plated microelectrode array for robust bacteria counting. In IEEE biomedical circuits and systems conference (pp. 1–4).Google Scholar
  17. 17.
    Komori, H., Niitsu, K., Tanaka, J., Ishige, Y., Kamahori, M., & Nakazato, K. (2014). An extended-gate CMOS sensor array with enzyme-immobilized microbeads for redox-potential glucose detection. In IEEE biomedical circuits and systems conference (pp. 464–467).Google Scholar
  18. 18.
    Niitsu, K., Kobayashi, A., Ogawa, Y., Nishizawa, M., & Nakazato, K. (2015). An energy-autonomous, disposable, big-data-based supply-sensing biosensor using bio fuel cell and 0.23-V 0.25-μm Zero-Vth all-digital CMOS supply-controlled ring oscillator with inductive transmitter. In IEEE biomedical circuits and systems conference (pp. 1–4).Google Scholar
  19. 19.
    Kuno, T., Niitsu, K., & Nakazato, K. (2014). Amperometric electrochemical sensor ar ray for on-chip simultaneous imaging. Japanese Journal of Applied Physics, 53(4S), 04EL01.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Kei Ikeda
    • 1
    Email author
  • Atsuki Kobayashi
    • 1
  • Kazuo Nakazato
    • 1
  • Kiichi Niitsu
    • 1
    • 2
  1. 1.Department of Electrical Engineering and Computer Science, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.PRESTOJSTSaitamaJapan

Personalised recommendations