Advertisement

Design and analysis of energy recyclable bidirectional converter with digital controller for multichannel microstimulators

  • Paul Jung-Ho LeeEmail author
  • Man-Kay Law
  • Amine Bermak
Article
  • 200 Downloads

Abstract

The power supply modulated microstimulator system can drive an expandable electrode array with reduced heat generation across the current drivers and high stimulation efficiency. Here, we present a comprehensive analytical modelling of the system to investigate internal and external energy flow during biphasic stimulation pulses spanning over varying loading configurations (e.g. number of electrodes, and stimulation current amplitude) that were not covered by existing works on the power supply modulated microstimulators. This paper fills the research gap by presenting the systematic tools for attaining insights of a stimulator system featuring a bidirectional DC–DC converter with an algorithmic digital controller. The models employed here are based on traditional analytical methods such as transfer functions and state-space dynamic models incorporating various circuit elements incurring power loss. With the models, the behaviour and power efficiency under a wide range of parameters associated with stimulator are attained. Numerical assessment reveals that the digital controller can track the output supply voltage at the phase transition boundaries just in tens of switching cycles. The system was also studied on a verification platform, where the internal signals of the digital controller were carefully examined. Measurement results show that the system behavior well matched to the simulation results, demonstrating the effectiveness of the analytical system model for obtaining key insights for generic large-scale micro-stimulator designs.

Keywords

Electrical stimulator Power supply modulation Energy recycling DC–DC converter 

Notes

Acknowledgements

This work was supported in part by the RGC research Grant Reference: 610412, the NRPP grant from Qatar National Research Fund Reference: NPRP9-421-2-170 and the Research Committee of the University of Macau (MYRG2015-AMSV-00140).

References

  1. 1.
    Nag, S., Jia, X., Thakor, N., & Sharma, D. (2013). Flexible charge balanced stimulator with 5.6 fc accuracy for 140 nc injections. IEEE Transactions on Biomedical Circuits Systems, 7(3), 266–275. doi: 10.1109/TBCAS.2012.2205574.CrossRefGoogle Scholar
  2. 2.
    Singh, V., Roy, A., Castro, R., McClure, K., Dai, R., Agrawal, R., et al. (2008). On the thermal elevation of a 60-electrode epiretinal prosthesis for the blind. IEEE Transactions on Biomedical Circuits Systems, 2(4), 289–300. doi: 10.1109/TBCAS.2008.2003430.CrossRefGoogle Scholar
  3. 3.
    Opie, N. L., Burkitt, A. N., Meffin, H., & Grayden, D. B. (2012). Heating of the eye by a retinal prosthesis: Modeling, cadaver and in vivo study. IEEE Transactions on Biomedical Engineering, 59(2), 339–345. doi: 10.1109/TBME.2011.2171961.CrossRefGoogle Scholar
  4. 4.
    Chen, K., Yang, Z., Hoang, L., Weiland, J., Humayun, M., & Liu, W. (2010). An integrated 256-channel epiretinal prosthesis. IEEE Journal Solid-State Circuits, 45(9), 1946–1956. doi: 10.1109/JSSC.2010.2055371.CrossRefGoogle Scholar
  5. 5.
    Lee, K.F.E. (2010). A timing controlled ac-dc converter for biomedical implants. In ISSCC Dig. Tech. Papers, Feb. 2010, pp. 128–129. doi: 10.1109/ISSCC.2010.5434021.
  6. 6.
    Williams, I., & Constandinou, T. G. (2013). An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Transactions on Biomedical Circuits and Systems, 7(2), 129–139. doi: 10.1109/TBCAS.2013.2256906.CrossRefGoogle Scholar
  7. 7.
    Arfin, S. K., & Sarpeshkar, R. (2012). An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation. IEEE Transactions on Biomedical Circuits and Systems, 6(1), 1–14. doi: 10.1109/TBCAS.2011.2166072.CrossRefGoogle Scholar
  8. 8.
    Lee, P. J. H., Bermak, A., Law, M. K., & Ohta, J. (2016). A multichannel power-supply-modulated microstimulator with energy recycling. IEEE Design and Test, 33(4), 61–73. doi: 10.1109/MDAT.2016.2533359.CrossRefGoogle Scholar
  9. 9.
    Park, S. Y., Cho, J., Lee, K., & Yoon, E. (2015). A pwm buck converter with load-adaptive power transistor scaling scheme using analog-digital hybrid control for high energy efficiency in implantable biomedical systems. IEEE Transactions on Biomedical Circuits and Systems, 9(6), 885–895. doi: 10.1109/TBCAS.2015.2501304.Google Scholar
  10. 10.
    Trescases, Olivier, Wei, Guowen, Prodic, Aleksandar, & Ng, Wai Tung. (2008). Predictive efficiency optimization for dc–dc converters with highly dynamic digital loads. IEEE Transactions on Power Electronics, 23(4), 1859–1869.CrossRefGoogle Scholar
  11. 11.
    Luo, P., Luo, L., Li, Z., Yang, J., & Chen, G. (2002). Skip cycle modulation in switching dc-dc converter. In IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002 (Vol. 2, pp. 1716–1719).Google Scholar
  12. 12.
    Merrill, Daniel  R, Bikson, Marom, & Jefferys, John G. R. (2005). Electrical stimulation of excitable tissue: Design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171–198.CrossRefGoogle Scholar
  13. 13.
    Patrick, Y., Wu, Patrick  Y, Tsui, Sam Y. S., & Mok, Philip K. T. (2010). Area-and power-efficient monolithic buck converters with pseudo-type iii compensation. IEEE Journal of Solid-State Circuits, 45(8), 1446–1455.CrossRefGoogle Scholar
  14. 14.
    Redl, Richard, & Sun, Jian. (2009). Ripple-based control of switching regulatorsan overview. IEEE Transactions of Power Electronics, 24(12), 2669–2680.CrossRefGoogle Scholar
  15. 15.
    Tan, Siew-Chong, Lai, Yuk-Ming, Cheung, Martin  Kin-ho, & Tse, Chi  K. (2005). On the practical design of a sliding mode voltage controlled buck converter. IEEE Trans. Power Electron., 20(2), 425–437.CrossRefGoogle Scholar
  16. 16.
    Yu, X., Wang, B., & Li, X. (2012). Computer-controlled variable structure systems: The state-of-the-art. IEEE Transactions on Industrial Informatics, 8(2), 197–205. doi: 10.1109/TII.2011.2178249.CrossRefGoogle Scholar
  17. 17.
    Jing, Xiaocheng, & Mok, Philip K. T. (2013). Power loss and switching noise reduction techniques for single-inductor multiple-output regulator. IEEE Transactions on Circuits Systems I: Regular Papers, 60(10), 2788–2798.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Streetman, B. G., & Banerjee, S. (1995). Solid state electronic devices (Vol. 2). Englewood Cliffs: Prentice-Hall.Google Scholar
  19. 19.
    Eichhorn, T. (2005). Estimate inductor losses easily in power supply designs. Power Electronics Technology, 31, 14–24.Google Scholar
  20. 20.
    Venkatachalam, K., Sullivan, C. R., Abdallah, T., & Tacca, H. (2002). Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only steinmetz parameters. In IEEE Workshop on Computers in Power Electronics (pp. 36–41).Google Scholar
  21. 21.
    Peterchev, A. V., & Sanders, S. R. (2003). Quantization resolution and limit cycling in digitally controlled pwm converters. IEEE Transactions on Power Electronics, 18(1), 301–308. doi: 10.1109/TPEL.2002.807092.CrossRefGoogle Scholar
  22. 22.
    Zheng, C., & Ma, D. (2011). A 10-mhz green-mode automatic reconfigurable switching converter for dvs-enabled vlsi systems. IEEE Journal of Solid-State Circuits, 46(6), 1464–1477. doi: 10.1109/JSSC.2011.2131770.CrossRefGoogle Scholar
  23. 23.
    Lee, Y. H., Huang, S. C., Wang, S. W., Wu, W. C., Huang, P. C., Ho, H. H., et al. (2012). Power-tracking embedded buck-boost converter with fast dynamic voltage scaling for the soc system. IEEE Transactions on Power Electronics, 27(3), 1271–1282. doi: 10.1109/TPEL.2010.2101085.CrossRefGoogle Scholar
  24. 24.
    Cheng, L., Liu, Y., & Ki, W. H. (2014). A 10/30 mhz fast reference-tracking buck converter with dda-based type-iii compensator. IEEE Journal of Solid-State Circuits, 49(12), 2788–2799. doi: 10.1109/JSSC.2014.2346770.CrossRefGoogle Scholar
  25. 25.
    Kudva, Sudhir  S, & Harjani, Ramesh. (2011). Fully-integrated on-chip dc-dc converter with a 450x output range. IEEE Journal of Solid-State Circuits, 46(8), 1940–1951.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringHong Kong University of Science and TechnologyClear Water BayHong Kong
  2. 2.State Key Laboratory of Analog and Mixed-Signal VLSIUniversity of MacauMacaoChina
  3. 3.College of Science and EngineeringHamad Bin Khalifa UniversityDohaQatar

Personalised recommendations