Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 90, Issue 1, pp 101–111 | Cite as

A 2.4 GHz high-performance CMOS differential quadrature relaxation oscillator

  • Eduardo Ortigueira
  • Taimur Rabuske
  • Luís B. Oliveira
  • Jorge Fernandes
  • Manuel M. Silva
Article

Abstract

In this paper, the effects that limit the performance of practical implementations of RC relaxation oscillators are investigated. The insights gained are used to suggest a topology for high-frequency quadrature relaxation oscillators with closer-to-optimal performance. The proposed oscillator uses a modified latch to improve the switching speed without increasing the power consumption. Moreover, the new topology avoids static current sources, maximizes the voltage swing and has an active coupling structure without static power consumption that reduces the circuit phase-noise. Experimental results show that the oscillator operates in relaxation mode at 2.4 GHz and achieves a FoM of \(\mathrm {-162\,dBc/Hz}\), which is, as far as the authors know, the best FoM for relaxation oscillators operating in the GHz range.

Keywords

Relaxation oscillator High frequency operation Phase-noise Figure-of-merit Quadrature oscillator 

Notes

Acknowledgments

The authors would like to thank Diogo Brito and Prof. Manuel D. Ortigueira for valuable technical discussions concerning the oscillator theoretical analysis.

References

  1. 1.
    Razavi, B. (1998). RF microelectronics. Upper Saddle River: Prentice-Hall.Google Scholar
  2. 2.
    Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  3. 3.
    Crols, J., & Steyaert, M. (1997). CMOS wireless transceiver design. MA: Kluwer Academic Publishers Norwell.zbMATHGoogle Scholar
  4. 4.
    Iniewski, K. (2008). VLSI circuits for biomedical applications. Norwood: Artech House.Google Scholar
  5. 5.
    Oliveira, L. B., Fernandes, J. R., Filanovsky, I. M., Verhoeven, C. J. M., & Silva, M. M. (2008). Analysis and design of quadrature oscillators. Dordrecht: Springer.CrossRefGoogle Scholar
  6. 6.
    Navid, R., Lee, T. H., & Dutton, R. W. (2005). Minimum achievable phase noise of RC oscillators. IEEE Journal of Solid-State Circuits, 40(3), 630–637.CrossRefGoogle Scholar
  7. 7.
    Geraedts, P. F. J., van Tuijl, E. A. J. M., Klumperink, E. A. M., Wienk, G. J. M., & Nauta, B. (2014). Towards minimum achievable phase noise of relaxation oscillators. International Journal of Circuit Theory and Applications, 42(3), 238–257.CrossRefGoogle Scholar
  8. 8.
    Geraedts, P. F. J., Van Tuijl, E., Klumperink, E. A. M., Wienk, G. J. M., & Nauta, B. (2008). A90\(\mu\)W 12MHz Relaxation Oscillator with a −162 dB FOM. In International Solid-State Circuits Conference (ISSCC) (pp. 348–618).Google Scholar
  9. 9.
    Razavi, B. (1996). A study of phase noise in CMOS oscillators. IEEE Journal of Solid-State Circuits, 31(3), 331–343.CrossRefGoogle Scholar
  10. 10.
    Ortigueira, E., Rabuske, T., Bica Oliveira, L., Fernandes, J., & Silva, M. (June 2014). Quadrature relaxation oscillator with fom of −165 dbc/hz. In IEEE International Symposium on Circuits and Systems (ISCAS) 2014 (pp. 1372–1375).Google Scholar
  11. 11.
    Roberts, M. J. (2003). Signals and systems: Analysis using transform methods and MATLAB. New York City: McGraw-Hill Higher Education.Google Scholar
  12. 12.
    Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.CrossRefGoogle Scholar
  13. 13.
    Leeson, D. B. (1966). A simple model of feedback oscillator noise spectrum. Proceedings of the IEEE, 54(2), 329–330.CrossRefGoogle Scholar
  14. 14.
    Buonomo, A., & Schiavo, A. L. (2006). Analysis of emitter (source)-coupled multivibrators. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(6), 1193–1202.CrossRefGoogle Scholar
  15. 15.
    Casaleiro, J., Lopes, H., Oliveira, L. B., Fernandes, J. R., & Silva, M. M. (2011). A 1 mW low phase-noise relaxation oscillator. In IEEE International Symposium on Circuits and Systems (pp. 1133–1136).Google Scholar
  16. 16.
    Oliveira, L. B., Fernandes, J. R., Silva, M. M., Filanovsky, I. M., & Verhoeven, C. J. M. (2007). Experimental evaluation of phase-noise and quadrature error in a CMOS 2.4 GHz relaxation oscillator. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1461–1464).Google Scholar
  17. 17.
    Kim, H., Kim, Y., Kim, T., Park, H., & Cho, S. 2016. 19.3 a 2.4ghz 1.5mw digital mdll using pulse-width comparator and double injection technique in 28nm cmos. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 328–329).Google Scholar
  18. 18.
    Kim, J., Leibowitz, B. S., Ren, J., & Madden, C. J. (2009). Simulation and analysis of random decision errors in clocked comparators. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8), 1844–1857.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ozalevli, E., & Hasler, P. E. (2008). Tunable highly linear floating-gate CMOS resistor using common-mode linearization technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(4), 999–1010.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fiorelli, R., Peralias, E. J., & Silveira, F. (2011). Lc-vco design optimization methodology based on the g_m/i_d ratio for nanometer cmos technologies. IEEE Transactions on Microwave Theory and Techniques, 59(7), 1822–1831.CrossRefGoogle Scholar
  21. 21.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  22. 22.
    Rabuske, T., & Fernandes, J. (2014). Noise-aware simulation-based sizing and optimization of clocked comparators. Analog Integrated Circuits and Signal Processing, 81(3), 723–728.CrossRefGoogle Scholar
  23. 23.
    Abdul-Latif, M. M., & Sanchez-Sinencio, E. (2012). Low phase noise wide tuning range n-push cyclic-coupled ring oscillators. IEEE Journal of Solid-State Circuits, 47(6), 1278–1294.CrossRefGoogle Scholar
  24. 24.
    Kim, J.-M., Kim, S., Lee, I.-Y., Han, S.-K., & Lee, S.-G. (2013). A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer cmos technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(2), 71–75.CrossRefGoogle Scholar
  25. 25.
    Badillo, D. A., & Kiaei, S. (2004). A low phase noise 2.0 V 900 MHz CMOS voltage controlled ring oscillator. In Proceedings of the IEEE Symposium on Circuits and Systems (Vol. 4, pp. IV–533).Google Scholar
  26. 26.
    Chen, Z.-Z., & Lee, T.-C. (2011). The design and analysis of dual-delay-path ring oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(3), 470–478.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Park, C.-H., & Kim, B. (1999). A low-noise, 900-mhz vco in 0.6 \(\mu\)m cmos. IEEE Journal of Solid-State Circuits, 34(5), 586–591.CrossRefGoogle Scholar
  28. 28.
    Grozing, M., Phillip, B., & Berroth, M. (2003). CMOS ring oscillator with quadrature outputs and 100 MHz–3.5 GHz tuning range. In Proceedinds of European Solid-State Circuits Conference (pp. 679–682).Google Scholar
  29. 29.
    Park, S. W., Sanchez-Sinencio, E., & Oscillator, R. F. (2009). Based on a passive RC bandpass filter. IEEE Journal of Solid-State Circuits, 44(11), 3092–3101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Eduardo Ortigueira
    • 1
  • Taimur Rabuske
    • 1
  • Luís B. Oliveira
    • 1
  • Jorge Fernandes
    • 1
  • Manuel M. Silva
    • 1
  1. 1.Inesc-IDLisbonPortugal

Personalised recommendations