Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 89, Issue 3, pp 727–737 | Cite as

Design of a new low loss fully CMOS tunable floating active inductor

  • Hadi Ghasemzadeh Momen
  • Metin Yazgi
  • Ramazan Kopru
  • Ali Naderi Saatlo
Article

Abstract

In this paper, a new tunable floating active inductor based on a modified tunable grounded active inductor is proposed. The multi regulated cascade stage is used in the proposed active structure to decrease the parasitic series resistance of active inductor, thus the Q factor enhancement is obtained. Furthermore, the arrangement of this stage leads to the smaller input transistor which determines active inductor’s self-resonance frequency and to be free of body effect which is crucial in sub-micron technology. Symmetrical design strategy has enabled both ports of the proposed floating active inductor to demonstrate the same properties. The Q factor and active inductor value are tuned with bias current and flexible capacitance (varactor), respectively. The self-resonance frequency of floating active inductor (~6.2 GHz) is almost the same as grounded prototype. In addition, the proposed active inductor also shows higher quality factor and inductance value compared to the conventional floating active inductor circuits. To show the performance of suggested circuit, simulations are done by using a 0.18 µm CMOS process, which demonstrates an adjustable quality factor of 10–567 with an inductance value range of 6–284 nH. Total DC power consumption and occupied area are 2 mW and 934.4 µm2, respectively.

Keywords

Tunable grounded active inductor Tunable floating active inductor Multi-regulated cascode stage Low loss 

References

  1. 1.
    Uyanik, H. U., & Tarim, N. (2007). Compact low voltage high-Q CMOS active inductor suitable for RF applications. Analog integrated circuits and signal processing, 51(3), 191–194. doi: 10.1007/s10470-007-9065-5.CrossRefGoogle Scholar
  2. 2.
    Kia, H. B. (2014) Adaptive CMOS LNA using highly tunable active inductor. In 2014 22nd Iranian conference on electrical engineering (ICEE), Vol., no., pp. 1, 6, 20–22, May, 2014.Google Scholar
  3. 3.
    Sunca, A., Cicekoglu, O., & Dundar, G. (2012). A wide tunable bandpass filter design based on CMOS active inductor. In 2012 8th conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Aachen, Germany, 2012.Google Scholar
  4. 4.
    Nagel, I., Fabre, L., Pastre, M., Krummenacher, F., Cherkaoui, R., & Kayal, M. (2012). Tunable floating active inductor with internal offset reduction. Electronics Letters, 48(13), 786–788.CrossRefGoogle Scholar
  5. 5.
    Lai, Q. T., & Mao, J. F. (2010). A new floating active inductor using resistive Feedback Technique. In 2010 IEEE MTT-S international Microwave symposium digest (MTT), Vol. no. pp. 1748, 1751, 23–28, May, 2010.Google Scholar
  6. 6.
    Tripetch, K. (2014). Symbolic analysis of ınput ımpedance of CMOS floating active inductors with application in fully differential bandpass amplifier. In 2014 IEEE 79th vehicular technology conference (VTC Spring), Vol. no. pp.1, 6, 18–21, May, 2014.Google Scholar
  7. 7.
    Thanachayanont, A., & Payne, A. (2000). CMOS floating active inductor and its applications to bandpass filter and oscillator designs. IEE Proceedings Circuits, Devices and Systems, 147(1), 42–48.CrossRefGoogle Scholar
  8. 8.
    Zito, D., Fonte, A., & Pepe, D. (2009). Microwave active inductors. IEEE Microwave and Wireless Components Letters, 19(7), 461–463.CrossRefGoogle Scholar
  9. 9.
    Lai, Q. T., & Mao, J. F. (2010). A new floating active inductor using resistive Feedback Technique. In 2010 IEEE MTT-S international microwave symposium digest (MTT), Anaheim, CA, 2010, pp. 1748–1751.Google Scholar
  10. 10.
    Hwang, K. S., Cho, C. S., Lee, J. W., & Kim, J. (2008). High quality-factor and inductance of symmetric differential-pair structure active inductor using a feedback resistance design. In 2008 IEEE MTT-S international microwave symposium digest, Atlanta, GA, 2008, pp. 1059–1062.Google Scholar
  11. 11.
    Ahmed, A., & Wight, J. (2010). 6.7 GHz high-Q active inductor design using parasitic cancellation with process variation control. Electronics Letters, 46(7), 486–487.CrossRefGoogle Scholar
  12. 12.
    Reja, M. M., Moez, K., & Filanovsky, I. (2010). An Area-efficient multistage 3.0- to 8.5-GHz CMOS UWB LNA using tunable active inductors. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(8), 587–591.CrossRefGoogle Scholar
  13. 13.
    Chen, Y., Mak, P. I., Zhang, L., Qian, H., & Wang, Y. (2013). A fifth-order 20-MHz transistorized-LC-Ladder LPF with 58.2-dB SFDR, 68-μW/Pole/MHz Efficiency, and 0.13-mm2 die size in 90-nm CMOS. In IEEE transactions on circuits and systems II: Express briefs, Vol. 60, no. 1, pp. 11–15, January 2013.Google Scholar
  14. 14.
    Yuan, F. (2008). CMOS active inductors and transformers: Principle, implementation, and applications, chap. 2. Springer. ISBN: 978-0-387-76477-1.Google Scholar
  15. 15.
    Momen, H. G., Yazgi, M., & Kopru, R. (2015). A low loss, low voltage and high Q active inductor with multi-regulated cascade stage for RF applications. In Proceedings of ICECS’15, Cairo-Egypt, December 2015, pp. 149–152.Google Scholar
  16. 16.
    Bunch, R. L., & Raman, S. (2003). Large-signal analysis of MOS varactors in CMOS-Gm LC VCOs. IEEE Journal of Solid-State Circuits, 38(8), 1325–1332.CrossRefGoogle Scholar
  17. 17.
    Sameni, P. et al. (2005). Modeling of MOS varactors and characterizing the tuning curve of a 5–6 GHz LC VCO. In 2005 IEEE international symposium on circuits and systems (Vol. 5, pp. 5071–5074).Google Scholar
  18. 18.
    Momen, H. G., Yazgi M., & Kopru, R. (2015). Designing a new high Q fully CMOS tunable floating active inductor based on modified tunable grounded active inductor. In 2015 9th international conference on electrical and electronics engineering (ELECO), Bursa, 2015, pp. 1–5.Google Scholar
  19. 19.
    Chen, Y., Mak, P. I., Zhang, L., Qian, H., & Wang, Y. (2013a). A fifth-order 20-MHz transistorized-LC-ladder LPF with 58.2-dB SFDR, 68-uW/Pole/MHz Efficiency, and 0.13-mm2 die size in 90-nm CMOS. In IEEE transactions on circuits and systems II: Express briefs, Vol. 60, no. 1, pp. 11–15, January 2013.Google Scholar
  20. 20.
    Chen, Y., Mak, P. I., D’Amico, S., Zhang, L., Qian, H., & Wang, Y. (2013b). A single-branch third-order pole-zero low-pass filter with 0.014-mm2 die size and 0.8-kHz (1.25-nW) to 0.94-GHz (3.99-mW) bandwidth-power scalability. In IEEE transactions on circuits and systems II: Express briefs, Vol. 60, no. 11, pp. 761–765, November 2013.Google Scholar
  21. 21.
    Wang, S., Koickal, T. J., Hamilton, A., Cheung, R., & Smith, L. S. (2015). A bio-realistic analog CMOS cochlea filter with high tunability and ultra-steep roll-off. IEEE Transactions on Biomedical Circuits and Systems, 9(3), 297–311.CrossRefGoogle Scholar
  22. 22.
    Pantoli, L., Stornelli, V., & Leuzzi, G. (2016). A low-voltage low-power 0.25 µm integrated single transistor active inductor-based filter. Analog integrated circuits and signal processing, 87(3), 463–469. doi: 10.1007/s10470-016-0727-z.CrossRefGoogle Scholar
  23. 23.
    Cetinkaya, H., & Tarim, N. (2008). A tunable active filter in CMOS for RF applications. In 15th IEEE international conference on electronics, circuits and systems, 2008. ICECS 2008. St. Julien’s, 2008, pp. 121–124.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hadi Ghasemzadeh Momen
    • 1
  • Metin Yazgi
    • 1
  • Ramazan Kopru
    • 2
  • Ali Naderi Saatlo
    • 3
  1. 1.Faculty of Electrical-Electronics EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.Faculty of Electrical-Electronics EngineeringIsik UniversitySile, IstanbulTurkey
  3. 3.Department of Electrical-Electronics Engineering, Urmia BranchIslamic Azad UniversityUrmiaIran

Personalised recommendations