Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 89, Issue 3, pp 749–770 | Cite as

A new neuron and synapse model suitable for low power VLSI implementation

  • Özgür Erdener
  • Serdar Ozoguz
Article

Abstract

A new dynamical neuron model for low power and compact VLSI implementation is presented. The model is capable of generating the most common type of spiking patterns. Judicious use of subthreshold CMOS design techniques leads to a very effective low-power CMOS Neuron and synapse circuits. The circuit consists of a single first-order log domain filter and a few hyperbolic function generators. We have also developed a circuit which realizes the synaptic interconnections of the neurons. Based on this complete neuron and synapse model, we studied synchronization behavior of two reciprocally interconnected neurons with excitatory and inhibitory couplings. Owing to the use of log-domain design and current-mode design, the circuits occupying low chip area and having very low power consumption are obtained even at real biological time-scale operation. These features make these circuits especially suitable for hybrid interface applications and large scale VLSI neuromorphic networks.

Keywords

Spiking neural networks (SNN) Neuron model Synapse model VLSI circuits Synchronization 

References

  1. 1.
    Vreeken J., 2002. “Spiking neural networks, an introduction”, Technical Reports, Utrecht University.Google Scholar
  2. 2.
    Izhikevich, E. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Nelson, M., & Rinzel, J. (2003). The Hodgkin–Huxley model. In The book of genesis, chapter 4.Google Scholar
  4. 4.
    FitzHugh, R. (1961). Impulses and physiological states in models of nerve membrane. Biophysical Journal, 1, 445–466.CrossRefGoogle Scholar
  5. 5.
    Rose, R. M., & Hindmarsh, J. L. (1989). The assembly of ionic currents in a thalamic neuron. The three-dimensional model. Proceedings of the Royal Society of London, Series B: Biological Sciences, 237, 267–288.CrossRefGoogle Scholar
  6. 6.
    Izhikevich, E. (2010). Hybrid spiking models. Philosophical Transactions of the Royal Society of London A, 368, 5061–5070.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.CrossRefGoogle Scholar
  8. 8.
    Brette, R., & Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of Neurophysiology, 94, 3637–3642.CrossRefGoogle Scholar
  9. 9.
    Izhikevich, E. (2007). Dynamical system in neuroscience: The geometry of excitability and bursting. Massachusetts London: The MIT Press Cambridge.Google Scholar
  10. 10.
    Morris, C., & Lecar, H. (1981). Voltage oscillations in the barnacle giant muscle fiber. Biophysical Journal, 35, 193–213.CrossRefGoogle Scholar
  11. 11.
    Touboul, J., & Brette, R. (2008). Dynamics and bifurcations of the adaptive exponential integrate and-fire model. Biological Cybernetics, 99, 319–334.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hodgkin, A. L., & Huxley, A. F. (1954). A quantitative description of membrane current and application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.CrossRefGoogle Scholar
  13. 13.
    Naud, R., Marcille, N., & Clopath, C. (2008). Firing patterns in the adaptive exponential integrate and-fire model. Biological Cybernetics, 99, 335–347.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Marder, E. (2000). Motor pattern generation. Current Opinion in Neurobiology, 10(6), 691–698.CrossRefGoogle Scholar
  15. 15.
    Izhikevich, E. (2003). Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks, 15(5), 1063–1070.CrossRefGoogle Scholar
  16. 16.
    Ramcharan, H. J., Gnadt, J. W., & Sherman, S. M. (2000). Burst and Tonic Firing in thalamic cells of unanesthetized, behaving monkeys. Visual Neuroscience, 17, 55–62.CrossRefGoogle Scholar
  17. 17.
    Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., et al. (2003). A VLSI recurrent network of integrate-and-fire neurons connected by plastic synapses with long term memory. IEEE Transactions on Neural Networks, 14(5), 1297–1307.CrossRefGoogle Scholar
  18. 18.
    Indiveri, G., Chicca, E., & Douglas, R. (2006). A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks, 17(1), 211–221.CrossRefGoogle Scholar
  19. 19.
    Vogelstein, R. J., Mallik, U., Vogelstein, J. T., & Cauwenberghs, G. (2007). Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses. IEEE Transactions on Neural Networks, 18(1), 253–265.CrossRefGoogle Scholar
  20. 20.
    Arthur, J. V., & Boahen, K. A. (2007). Synchrony in silicon: The gamma rhythm. IEEE Transactions on Neural Networks, 18(6), 1815–1825.CrossRefGoogle Scholar
  21. 21.
    Wijekoon J. H. B. & Dudek P. (2009). A CMOS circuit implementation of a spiking neuron with bursting and adaptation on a biological timescale. In IEEE BIOCAS (pp.193–196).Google Scholar
  22. 22.
    Livi P. & Indiveri G. (2009). A current-mode conductance-based silicon neuron for Address-Event neuromorphic systems. In Proceedings of IEEE ISCAS (pp. 2898–2901).Google Scholar
  23. 23.
    Rangan V., Ghosh A., Aparin V. and Cauwenberghs G., 2010. “A Subthreshold a VLSI Implementation of the Izhikevich Simple Neuron Model,” IEEE EMBC. Google Scholar
  24. 24.
    Millner S., Grübl A., Meier K., Schemmel J. and Schwartz M. O., 2010. “A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model” Advances in Neural Information Processing Systems (NIPS) 23.Google Scholar
  25. 25.
    Edwards, R. D., & Cauwenberghs, G. (2000). “Synthesis of Log-Domain Filters from First-Order Building Blocks” Analog Int. Circ. Sign. Proc., 22, 177–186.Google Scholar
  26. 26.
    Camacho-Galeano, E. M., Galup-Montoro, C., & Schneider, M. C. (2005). “A 2-nW 1.1-V self-biased current reference in CMOS technology” IEEE Trans. Circ.&Syst. II, 52, 61–65.Google Scholar
  27. 27.
    Van Schaik A., Jin C., McEwan A., Hamilton T. J., 2010. “A log-domain implementation of the Izhikevich neuron model”. ISCAS, 4253-4256.Google Scholar
  28. 28.
    Wijekoon, J. H. B., & Dudek, P. (2008). Compact silicon neuron circuit with spiking and bursting behaviour. Neural Networks, 21, 524–534.CrossRefGoogle Scholar
  29. 29.
    Van Schaik A., Jin C., McEwan A., Hamilton T. J., Mihalas S., Niebur E., 2010. “A log-domain implementation of the Mihalas-Niebur neuron model”, IEEE Proc. of ISCAS, 4249-4252.Google Scholar
  30. 30.
    Zhang X., 2008. “A Mathematical Model of a Neuron with Synapses based on Physiology”, Nature Precedings.Google Scholar
  31. 31.
    Pinto, R. D., Varona, P., Volkovskii, A. R., Szucs, A., Abarbanel, H. D. I., & Rabinovich, M. I. (2000). Synchronous behavior of two coupled electronic Neurons. Physical Review E, 62(2), 2644–2656.CrossRefGoogle Scholar
  32. 32.
    Galan, Roberto F., Bard Ermentrout, G., & Urban, Nathaniel N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling. Physical Review Letters, PRL, 84, 158101.CrossRefGoogle Scholar
  33. 33.
    Gutkin, Boris S., Bard Ermentrout, G., & Reyes, Alex D. (2005). Phase-response curves give the responses of neurons to transient inputs. Journal of Neurophysiology, 94, 1623–1635.CrossRefGoogle Scholar
  34. 34.
    Uwate, Y., Nishio, Y., & Stoop, R. (2010). Complex pattern in a ring of van der Pol oscillators coupled by time-varying resistor. Journal of Circuits, Systems, and Computers, 19(4), 819–834.CrossRefGoogle Scholar
  35. 35.
    Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Electrical & Electronics EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations