Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 89, Issue 3, pp 685–691 | Cite as

Improving the bandwidth of the transimpedance amplifier based on CS stages in cascode configuration using impedance matching techniques

  • Jawdat Y. Abu-Taha
  • Metin Yazgi
Article

Abstract

This paper describes a matching technique to improve the bandwidth of multi-GHz frequency ranges for the transimpedance amplifier. It is shown that by simultaneously using of series input matching topology and T-output matching network, the bandwidth of the TIA can be obviously improved. This methodology is supported by a design example in a 0.18 μm CMOS technology. The post layout simulation results show a −3dB bandwidth of 20 GHz with 50 fF photodiode capacitance, a transimpedance gain of \(52.6\,{\mathrm {dB\Omega }}\), \(11\,{\mathrm {pA / \sqrt{Hz}}}\) input referred noise and group delay less than \(8.3\,{\mathrm {ps}}\). The TIA dissipates \(1.3\,{\mathrm { mW}}\) from a \(1.8 \,{\mathrm {V}}\) supply voltage.

Keywords

Transimpedance amplifier (TIA) Cascode stage Matching network Input-referred noise Bandwidth extension 

Notes

Acknowledgments

Part of the research work in this paper has been published in the Proceedings of the 9th The international Conference on Electrical and Electronics Engineering, ELECO 2015”, November, 2015, Bursa, Turkey.

References

  1. 1.
    Oh, Y.-H., & Lee, S.-G. (2004). An inductance enhancement technique and its application to a shunt-peaked 2.5 Gb/s transimpedance amplifier design. IEEE Transactions on Circuits and Systems II: Express Briefs, 51(11), 624–628.CrossRefGoogle Scholar
  2. 2.
    Yu, Y., Baltus, P. G., & Van Roermund, A. H. (2011). Integrated 60GHz RF Beamforming in CMOS. Netherlands: Springer.CrossRefzbMATHGoogle Scholar
  3. 3.
    Fan, X., Zhang, H., & Sánchez-Sinencio, E. (2008). A noise reduction and linearity improvement technique for a differential cascode LNA. IEEE Journal of Solid State Circuits, 43(3), 588–599.CrossRefGoogle Scholar
  4. 4.
    Abidi, A. A. (2004). RF-CMOS comes of age. IEICE Transactions on Electronics, 87(6), 840–853.Google Scholar
  5. 5.
    Seng, C.W., Sern, T.Y., Seng, Y.K. (2013). A low power wideband differential transimpedance amplifier for optical receivers in 0.18-\(\upmu\)m CMOS. In 2013 IEEE 11th international new circuits and systems conference (NEWCAS) (pp. 1–4). IEEEGoogle Scholar
  6. 6.
    Marzuki, A. (2011). Advances in monolithic microwave integrated circuits for wireless systems: Modeling and design technologies: Modeling and Design Technologies. Pennsylvania: IGI Global.Google Scholar
  7. 7.
    Chen, W.-H., Liu, G., Zdravko, B., & Niknejad, A. M. (2008). A highly linear broadband CMOS LNA employing noise and distortion cancellation. IEEE Journal of Solid State Circuits, 43(5), 1164–1176.CrossRefGoogle Scholar
  8. 8.
    Chen, K.-H., Lu, J.-H., Chen, B.-J., & Liu, S.-I. (2007). An ultra-wide-band 0.4-10 GHz LNA in 0.18-\(\upmu\) m CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(3), 217–221.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Govind, V., Dalmia, S., & Swaminathan, M. (2004). Design of integrated low noise amplifiers (lna) using embedded passives in organic substrates. IEEE Transactions on Advanced Packaging, 27(1), 79–89.CrossRefGoogle Scholar
  10. 10.
    Samavati, H., Rategh, H. R., & Lee, T. H. (2000). A 5-GHz CMOS wireless LAN receiver front end. IEEE Journal of Solid State Circuits, 35(5), 765–772.CrossRefGoogle Scholar
  11. 11.
    Wadatsumi, J., Kousai, S., Miyashita, D., Hamada, M. (2008). A 1.2 V, 0.1-6.0 GHz, two-stage differential LNA using gain compensation scheme. In IEEE topical meeting on silicon monolithic integrated circuits in RF systems, 2008. SiRF 2008 (pp. 175–178). IEEEGoogle Scholar
  12. 12.
    Perumana, B.G., Zhan, J.-H.C., Taylor, S.S., Carlton, B.R., Laskar, J. (2008). A 9.2 mw, 4-8 GHz resistive feedback CMOS LNA with 24.4 db gain, 2 db noise figure, and 21.5 dbm output ip3. In IEEE topical meeting on silicon monolithic integrated circuits in RF systems, 2008. SiRF 2008 (pp. 34–37). IEEEGoogle Scholar
  13. 13.
    Ragheb, T., Nieuwoudt, A., Massoud, Y. (2006). Modeling of 3.1-10.6 Ghz CMOS filter-based low noise amplifier for ultra-wideband receivers. In IEEE Annual Wireless and Microwave Technology Conference, WAMICON’06 (pp. 1–5). IEEEGoogle Scholar
  14. 14.
    Egels, M., Gaubert, J., Pannier, P. (2006). High frequency LNA design in standard CMOS process. In 2006 IEEE north-east workshop on circuits and systems (pp. 5–8). IEEEGoogle Scholar
  15. 15.
    Adabi, E., Heydari, B., Bohsali, M., Niknejad, A.M. (2007). 30 GHz CMOS low noise amplifier. In 2007 IEEE radio frequency integrated circuits (RFIC) symposium (pp. 625–628). IEEEGoogle Scholar
  16. 16.
    Kiyota, Y., Chen, C.-H., Kubodera, T., Nakamura, A., Takeshita, K., Deen, M. (2007). A new approach of high frequency noise modeling for 70-nm NMOS transistors by accurate noise source extraction. In 2007 IEEE radio frequency integrated circuits (RFIC) symposium (pp. 635–638). IEEEGoogle Scholar
  17. 17.
    Sangirov, J., Ukaegbu, I.A., Nguyen, N.T., Lee, T.-W., Cho, M.-H., Park, H.-H. (2014). Design of small-area transimpedance optical receiver module for optical interconnects. In 2014 16th international conference on advanced communication technology (ICACT) (pp. 283–289). IEEEGoogle Scholar
  18. 18.
    Ngo, T.-H., Lee, T.-W., & Park, H.-H. (2011). 4.1 mW 50 db\(\omega\) 10 Gbps transimpedance amplifier for optical receivers in 0.13 \(\upmu\)m cmos. Microwave and Optical Technology Letters, 53(2), 448–451.CrossRefGoogle Scholar
  19. 19.
    Zhenghao, L., Dandan, C., Seng, Y.K. (2009). An inductor-less broadband design technique for transimpedance amplifiers. In Proceedings of the 2009 12th international symposium on integrated circuits, ISIC’09 (pp. 232–235). IEEEGoogle Scholar
  20. 20.
    Abu-Taha, J., Yazgi, M. (2016). A 7 GHz compact transimpedance amplifier TIA in CMOS \(0.18 \upmu m\) technology. Analog Integrated Circuits And Signal Processing. doi: 10.1007/s10470-016-0689-1.
  21. 21.
    Raut, R., Ghasemi, O. (2008). A power efficient wide band trans-impedance amplifier in sub-micron CMOS integrated circuit technology. In: 2008 joint 6th international IEEE northeast workshop on circuits and systems and TAISA conference, 2008. NEWCAS-TAISA 2008 (pp. 113–116). IEEEGoogle Scholar
  22. 22.
    Jin, J.-D., & Hsu, S. S. (2008). A 40-Gb/s transimpedance amplifier in 180nm CMOS technology. IEEE Journal of Solid State Circuits, 43(6), 1449–1457.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical & Electronics EngineeringIstanbul Technical UniversityIstanbulTurkey

Personalised recommendations