Analog Integrated Circuits and Signal Processing

, Volume 89, Issue 3, pp 705–718 | Cite as

Dual-parameter control of the pole frequency in case of universal filter with MCDU elements

  • Jan Jerabek
  • Roman Sotner
  • Norbert Herencsar
  • Josef Polak
  • Jan Dvorak
  • Jaroslav Koton
Article
  • 172 Downloads

Abstract

This paper presents an universal filter with control of the pole frequency by two mutually independent parameters—current gain (B) and intrinsic resistance (Rx) in frame of two modified current differencing unit (MCDU) active elements. This type of control extends and also improves features of the tuning range and is referred to as dual-parameter control. The current-mode filter is of the second order and the required type of the response (low pass, inverting band pass, high pass, band reject and all pass) is obtained by proper selection/combination of input(s)—this filter is of the multiple-input single-output type. The filter employs two capacitors, two MCDUs, each of them with four controllable parameters and one multiple-output current follower. The paper includes tuning range analysis, the simulation results with behavioral models and also laboratory measurement results with the same models. Moreover, designed transistor-level structures of both the active elements proposed in ON Semiconductor I3T CMOS 0.35 um technology that were used for final simulations confirm the workability and features of the designed concept.

Keywords

Current differencing unit Dual-parameter control Electronic control MCDU Universal filter 

References

  1. 1.
    Chen, W. K. (2009). The circuits and filters handbook. New York: Third Edition CRC Press.Google Scholar
  2. 2.
    Kumngern, M., Khateb, F., Dejhan, K., Phasukkit, P., & Tungjitkusolmun, S. (2013). Voltage-mode multifunction biquadratic filters using new ultra-low-power differential difference current conveyors. Radioengineering, 22(2), 448–457.Google Scholar
  3. 3.
    Kacar, F., Metin, B., Kuntman, H., & Cicekoglu, O. (2009). Current-mode multifunction filters using a single FDCCII. In International Conference on Electrical and Electronics Engineering (ELECO) 2009 (pp. II/54–II/57).Google Scholar
  4. 4.
    Wang, H. Y., & Lee, C. T. (2001). Versatile insensitive current-mode universal biquad implementation using current conveyors. IEEE Transaction on Circuits and Systems II: Analog and Digital Signal Processing, 48(4), 409–413.CrossRefGoogle Scholar
  5. 5.
    Sun, Y., & Fidler, J. K. (1996). Structure generation of current-mode two integrator loop dual output-OTA grounded capacitor filters. IEEE Transaction on Circuits and Systems II: Analog and Digital Signal Processing, 43(9), 659–663.CrossRefGoogle Scholar
  6. 6.
    Yuce, E. (2009). Voltage-mode multifunction filters employing a single DVCC and grounded capacitors. IEEE Transaction on Instrumentation and Measurement, 58(7), 2216–2221.CrossRefGoogle Scholar
  7. 7.
    Ray, B. N. (2004). Synthesis of programmable multi-input current-mode linear analog circuits. IEEE Transaction on Circuits and Systems I: Regular papers, 51(8), 1440–1456.CrossRefGoogle Scholar
  8. 8.
    Jerabek, J., & Vrba, K. (2010). SIMO type low-input and high-output impedance current- mode universal filter employing three universal current conveyors. AEU-International Journal of Electronics and Communications, 64(6), 588–593.CrossRefGoogle Scholar
  9. 9.
    Jaikla, W., Siripongdee, S., & Suwanjan, P. (2012). MISO current-mode biquad filter with independent control of pole frequency and quality factor. Radioengineering, 21(3), 886–891.Google Scholar
  10. 10.
    Uygur, A., Kuntman, H., & Zeki, A. (2005). Multi-input multi-output CDTA-based KHN filter. In International Conference on Electrical and Electronics Engineering (ELECO) 2005 (pp. 46–50).Google Scholar
  11. 11.
    Alpaslan, H., & Yuce, E. (2012). Current-mode biquadratic universal filter design with two terminal unity gain cells. Radioengineering, 21(1), 304–311.Google Scholar
  12. 12.
    Minaei, S., Sayin, O. K., & Kuntman, H. (2006). A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Transactions on Circuits and Systems-Part-I: Regular Papers, 53(7), 1448–1457.CrossRefGoogle Scholar
  13. 13.
    Naglich, E. J., Lee, J., Peroulis, D., & Chappell, W. J. (2012). Extended passband bandstop filter cascade with continuous 0.85 to 6.6 GHz coverage. IEEE Transactions on Microwave Theory and Techniques, 60(1), 21–30.CrossRefGoogle Scholar
  14. 14.
    Adoum, B. A., & Wen, W. P. (2012). Investigation of band-stop to all pass reconfigurable filter. In 4th International Conference on Intelligent and Advanced Systems (pp. 190–193).Google Scholar
  15. 15.
    Minaei, S., Yuce, E., & Cicekoglu, O. (2005). Electronically tunable multi-input single-output voltage-mode filter. In 2005 European Conference on Circuit Theory and Design (pp. III/401–III/404).Google Scholar
  16. 16.
    Jerabek, J., Koton, J., Sotner, R., & Vrba, K. (2013). Adjustable band-pass filter with current active elements: Two fully-differential and single-ended solutions. Analog Integrated Circuits and Signal Processing, 74(1), 129–139.CrossRefGoogle Scholar
  17. 17.
    Siripruchyanun, M., & Jaikla, W. (2008). Current controlled current conveyor transconductance amplifier (CCCCTA): A building block for analog signal processing. Electrical Engineering, 90(6), 443–453.CrossRefGoogle Scholar
  18. 18.
    Keskin, A. U., Biolek, D., Hancioglu, E., & Biolkova, V. (2006). Current-mode KHN filter employing current differencing transconductance amplifiers. AEU-International Journal of Electronics and Communications, 60(6), 443–446.CrossRefGoogle Scholar
  19. 19.
    Herencsar, N., Koton, J., Vrba, K., & Lahiri, A. (2009). New voltage-mode quadrature oscillator employing single DBTA and only grounded passive elements. IEICE Electronics Express, 6(24), 1708–1714.CrossRefGoogle Scholar
  20. 20.
    Sotner, R., Herencsar, N., Jerabek, J., Prokop, R., Kartci, A., Dostal, T., & Vrba, K. (2014). Z-copy controlled-gain voltage differencing current conveyor: Advanced possibilities in direct electronic control of first-order filter. Elektronika Ir Elektrotechnika, 20(6), 77–83.CrossRefGoogle Scholar
  21. 21.
    Soulitis, G., & Psychalinos, C. (2009). Electronically controlled multiphase sinusoidal oscillators using current amplifiers. International Journal of Circuit Theory and Applications, 37(1), 43–52.CrossRefGoogle Scholar
  22. 22.
    Herencsar, N., Jerabek, J., Koton, J., Vrba, K., Minaei, S., & Göknar, C. (2015). Pole frequency and pass-band gain tunable novel fully-differential current-mode all-pass filter. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2668–2671).Google Scholar
  23. 23.
    Jerabek, J., Sotner, R., Herencsar, N., Jaikla, W., & Vrba, K. (2015). Behavioral model for Z-copy voltage controlled current follower differential input transconductance amplifier and its features. In 2015 38th International Conference on Telecommunications and Signal Processing (pp. 703–707).Google Scholar
  24. 24.
    Chen, H. P., & Chu, P. L. (2009). Versatile universal electronically tunable current-mode filter using CCCIIs. IEICE Electronics Express, 6(2), 122–128.CrossRefGoogle Scholar
  25. 25.
    Singh, S. V., Maheshwari, S., & Chauhan, D. S. (2010). Universal current-controlled current-mode biquad filter employing MO-CCCCTAs and grounded capacitors. Circuits and Systems, 1(2), 35–40.CrossRefGoogle Scholar
  26. 26.
    Chaichana, A., Jantakun, A., Kumngern, M., & Jaikla, W. (2015). Current-mode MISO filter using CCCDTAs and grounded capacitors. Indian Journal of Pure and Applied Physics, 53(6), 470–477.Google Scholar
  27. 27.
    Kumngern, M., Khateb, F., Phasukkit, P., Tungjitkusolmun, S., & Junnapiya, S. (2014). ECCCII-based current-mode universal filter with orthogonal control of w0 and Q. Radioengineering, 23(2), 687–696.Google Scholar
  28. 28.
    Walde, N., & Ahmad, S. N. (2015). Realization of a new current mode second-order biquad using two current follower transconductance amplifiers (CFTAs). Circuits and Systems, 6(5), 113–120.CrossRefGoogle Scholar
  29. 29.
    Srisakultiev, S., Lawanwisut, S., & Siripruchyanun, M. (2013). A current-mode electronically controllable multifunctional biquadratic filter using CCCIIs. International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, 2(2), 45–50.Google Scholar
  30. 30.
    Singh, S. V., Maheshwari, S., & Chauhan, D. S. (2010). Elecronically tunable current-mode SIMO/MISO universal biquad filter using MO-CCCCTAs. International Journal on Electrical and Power Engineering (ACEE), 1(3), 36–41.Google Scholar
  31. 31.
    Sotner, R., Slezak, J., Dostal, T., & Petrzela, J. (2010). Universal tunable current-mode biquad employing distributed feedback structure with MO-CCCII. Journal of Electrical Engineering, 61(1), 52–56.CrossRefGoogle Scholar
  32. 32.
    Sotner, R., Slezak, J., & Petrzela, J. (2009). Current mode tunable KHN filter based on controlled MO-CFTAs. In 3rd International Conference on Signals, Circuits and Systems SCS 2009 (pp. 521–524).Google Scholar
  33. 33.
    Suwanjan, P., & Jaikla, W. (2012). CFTA MISO Current-mode biquad filter. In Proceeding of Recent Researches in Circuits, Systems, Multimedia and Automatic Control (pp. 93–97).Google Scholar
  34. 34.
    Koomchaya, A., Suvanjan, P., Jaikla, A., & Maneewan, S. (2012). A MISO current-mode biquad filter using a minimum number of active and passive components. In IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC) (pp. 1–4).Google Scholar
  35. 35.
    Kumngern, M. (2012). Electronically tunable current-mode universal biquadratic filter using a signle CCCFTA. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1175–1178).Google Scholar
  36. 36.
    Sotner, R., Slezak, J., & Dostal T. (2010). Influence of mirroring of current output responses through grounded passive elements. In Proceedings of the 20th International Conference Radioelektronika (pp. 177–180).Google Scholar
  37. 37.
    Jerabek, J., Sotner, R., Kincl, Z., Dostal, T., & Vrba K. (2013). Study of practical problems in two-loop ccta based biquad: Finite attenuations in stop bands. In 8th International Conference on Electrical and Electronics Engineering (pp. 40–44).Google Scholar
  38. 38.
    Sotner, R., Petrzela, J., Jerabek, J., & Dostal, T. (2015). Reconnection-less OTA- based biquad filter with electronically reconfigurable transfers. Elektronika Ir Elektrotechnika, 21(3), 33–37.CrossRefGoogle Scholar
  39. 39.
    Sotner, R., Jerabek, J., Herencsar, N., & Vrba, K. (2015). Design of the simple oscillator with linear tuning and pi/4 phase shift based on emulator of the modified current differencing unit. IEICE Electronics Express, 12(19), 1–7.CrossRefGoogle Scholar
  40. 40.
    Sotner, R., Jerabek, J., Herencsar, N., Zak, T., Jaikla, W., & Vrba, K. (2015). Modified current differencing unit and its application for electronically reconfigurable simple first-order transfer function. Advances in Electrical and Computer Engineering, 15(1), 3–10.CrossRefGoogle Scholar
  41. 41.
    Polak, J., Jerabek, J., Langhammer, L., & Sotner, R. (2015). Practical AC & DC measurements of new MCDU active element. Elektrorevue, 6(1), 25–29.Google Scholar
  42. 42.
    Jerabek, J., Sotner, R., Herencsar, N., Polak, J., Dvorak, J., & Koton, J. (2015). MISO universal frequency filter with dual-parameter control of the pole frequency. In 9th International Conference on Electrical and Electronics Engineering (ELECO) (pp. 101–105).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jan Jerabek
    • 1
  • Roman Sotner
    • 2
  • Norbert Herencsar
    • 1
  • Josef Polak
    • 1
  • Jan Dvorak
    • 1
  • Jaroslav Koton
    • 1
  1. 1.Department of TelecommunicationsBrno University of TechnologyBrnoCzech Republic
  2. 2.Department of Radio ElectronicsBrno University of TechnologyBrnoCzech Republic

Personalised recommendations